scholarly journals Portable Solar Spectrum Reflectometer for planar and parabolic mirrors in solar thermal energy plants

Solar Energy ◽  
2016 ◽  
Vol 135 ◽  
pp. 446-454 ◽  
Author(s):  
Iñigo Salinas ◽  
Carlos Heras ◽  
Carlos Alcañiz ◽  
David Izquierdo ◽  
Noelia Martínez ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1872
Author(s):  
Buxiong Qi ◽  
Wenqiong Chen ◽  
Tiaoming Niu ◽  
Zhonglei Mei

A full-spectrum near-unity solar absorber has attracted substantial attention in recent years, and exhibited broad application prospects in solar thermal energy conversion. In this paper, an all-metal titanium (Ti) pyramid structured metamaterial absorber (MMA) is proposed to achieve broadband absorption from the near-infrared to ultraviolet, exhibiting efficient solar-selective absorption. The simulation results show that the average absorption rate in the wavelength range of 200–2620 nm reached more than 98.68%, and the solar irradiation absorption efficiency in the entire solar spectrum reached 98.27%. The photothermal conversion efficiency (PTCE) reached 95.88% in the entire solar spectrum at a temperature of 700 °C. In addition, the strong and broadband absorption of the MMA are due to the strong absorption of local surface plasmon polariton (LSPP), coupled results of multiple plasmons and the strong loss of the refractory titanium material itself. Additionally, the analysis of the results show that the MMA has wide-angle incidence and polarization insensitivity, and has a great processing accuracy tolerance. This broadband MMA paves the way for selective high-temperature photothermal conversion devices for solar energy harvesting and seawater desalination applications.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120096
Author(s):  
Hongjuan Hou ◽  
Qiongjie Du ◽  
Chang Huang ◽  
Le Zhang ◽  
Eric Hu

Sign in / Sign up

Export Citation Format

Share Document