selective absorption
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 109)

H-INDEX

41
(FIVE YEARS 6)

Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Oleg V. Rodinkov ◽  
Alexey Y. Pisarev ◽  
Leonid N. Moskvin ◽  
Aleksandra S. Bugaichenko ◽  
Pavel N. Nesterenko

In this study, a novel approach in headspace gas chromatographic analysis using the selective absorption of the gas extractant during concentration of the analytes was developed. The carbon dioxide used as the gas extractant was removed from the sample flow by passing it through a column packed with microdispersed sodium hydroxide granules. The analytical capabilities of the suggested method were illustrated by the determination of aliphatic and aromatic hydrocarbons in water. We established that this method allows the preconcentration of analytes in the gas phase to be increased proportionally to the volume ratios of the gas extractant before and after absorption, while the analyte limits of detection decrease 30-fold. For example, benzene can be detected in water at a concentration of 0.5 μg/L.


Desalination ◽  
2022 ◽  
Vol 521 ◽  
pp. 115392
Author(s):  
Shengkai Liu ◽  
Shuang Zhou ◽  
Guo Dong Li ◽  
Cheng Wang ◽  
Carla Bittencourt ◽  
...  

Author(s):  
Ying Cui ◽  
Xiaosai Wang ◽  
Huan Jiang ◽  
Yongyuan Jiang

Abstract Circular dichroism (CD) response is extremely important for dynamic polarization control, chiral molecular sensing and imaging, etc. Here, we numerically demonstrated high-efficiency and tunable CD using a symmetry broken graphene-dielectric-metal composite microstructure. By introducing slot patterns in graphene ribbons, the metasurface exhibits giant spin-selective absorption for circularly polarized (CP) wave excitations. The maximum CD reaches 0.87 at 2.78 THz, which originates from the localized surface plasmon resonances (LSPRs) in patterned graphene. Besides, the operating frequency and magnitude of CD are dynamically manipulated by gating graphene's Fermi energies. The proposed chiral graphene metasurface with high- efficiency and tunable capability paves a way to the design of active CD metasurfaces.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8186
Author(s):  
Xin Jin ◽  
Guiping Lin ◽  
Haichuan Jin ◽  
Zunru Fu ◽  
Haoyang Sun

As low-cost, widely distributed and easily accessible renewable clean energy, solar energy has attracted more and more attention. Direct absorption solar collectors can convert solar energy into heat, but their efficiency is closely related to the absorption performance of the working fluid. In order to improve the absorption efficiency of direct absorption solar collectors, an experimental study on the selective absorption of solar energy by hybrid nanofluids was carried out. Five hybrid nanofluids were prepared and characterized, and the energy transfer advantages of hybrid nanofluid over single nanofluid were carefully studied. Experiments have found that the light-to-heat conversion properties of hybrid nanofluids show no obvious advantages or disadvantages compared with single nanofluid, and their performance is closely related to the types of nanoparticles. In addition, the hybrid nanofluid generally has two peaks, exactly the same as the single nanofluid in the mixed component, but the absorption curve is flatter than that of the single nanofluid. Further research of more types of hybrid nanofluids can provide new insights into the use of solar energy.


2021 ◽  
pp. 004051752110417
Author(s):  
Hengyu Zhang ◽  
Jianying Chen ◽  
Hui Ji ◽  
Ni Wang ◽  
Hong Xiao

Three kinds of electromagnetic functional materials, frequency selective surface, carbonyl iron coated absorbing fabric and conductive woven fabric, were laminated to filter, absorb and reflect electromagnetic waves. Through equivalent circuit analysis, the frequency selection characteristics and the correlation between the shape and size of the periodic structure of cross-shaped and Jerusalem-shaped frequency selective surfaces were studied. It is found that frequency selective surfaces can reduce the transmission coefficient of carbonyl iron coated fabric at the resonance point, so that the working frequency band of the composite shielding material can be controlled and adjusted. The stacking order has no effect on the frequency selective surface/frequency selective surface double-layer materials, but influence the transmission coefficient of composite materials with frequency selective surface superimposed carbonyl iron coated fabric and/or conductive woven fabric. Among all samples, the transmission coefficient of Jerusalem-shaped/carbonyl iron coated fabric-3/conductive woven fabric has the most strong shielding effect, which is up to −51.72 dB at 10.48 GHz. It is proved that using flexible fabric as the matrix and compounding materials with different electromagnetic functions is an effective method to realize high efficiency and adjustable electromagnetic shielding ability.


2021 ◽  
Vol 38 (11) ◽  
pp. 116802
Author(s):  
Jie Jiang ◽  
Liuhua Mu ◽  
Yu Qiang ◽  
Yizhou Yang ◽  
Zhikun Wang ◽  
...  

Lithium plays an increasingly important role in scientific and industrial processes, and it is extremely important to extract lithium from a high Mg2+/Li+ mass ratio brine or to recover lithium from the leachate of spent lithium-ion batteries. Conventional wisdom shows that Li+ with low valence states has a much weaker adsorption (and absorption energy) with graphene than multivalent ions such as Mg2+. Here, we show the selective adsorption of Li+ in thermally reduced graphene oxide (rGO) membranes over other metal ions such as Mg2+, Co2+, Mn2+, Ni2+, or Fe2+. Interestingly, the adsorption strength of Li+ reaches up to 5 times the adsorption strength of Mg2+, and the mass ratio of a mixed Mg2+/Li+ solution at a very high value of 500 : 1 can be effectively reduced to 0.7 : 1 within only six experimental treatment cycles, demonstrating the excellent applicability of the rGO membranes in the Mg2+/Li+ separation. A theoretical analysis indicates that this unexpected selectivity is attributed to the competition between cation–π interaction and steric exclusion when hydrated cations enter the confined space of the rGO membranes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260086
Author(s):  
Xin Ran ◽  
Xiao Wang ◽  
Xiaokuan Gao ◽  
Haiyong Liang ◽  
Bingxiang Liu ◽  
...  

Objective The purpose of this study was to explore the adaptive mechanism underlying the photosynthetic characteristics and the ion absorption and distribution of white willow (Salix alba L.) in a salt stress environment in cutting seedlings. The results lay a foundation for further understanding the distribution of sodium chloride and its effect on the photosynthetic system. Method A salt stress environment was simulated in a hydroponics system with different NaCl concentrations in one-year-old Salix alba L.branches as the test materials. Their growth, ion absorption, transport and distribution in the roots and leaves, and the changes in the photosynthetic fluorescence parameters were studied after 20 days under hydroponics. Results The results show that The germination and elongation of roots are promoted in the presence of 171mM NaCl, but root growth is comprehensively inhibited under increasing salt stress. Under salt stress, Na+ accumulates significantly in the roots and leaves, and the Na+ content and the Na+/K+ and Na+/Ca2+ root ratios are significantly greater than those in the leaves. When the NaCl concentration is ≤ 342mM, Salix alba can maintain relatively stable K+ and Ca2+ contents in its leaves by improving the selective absorption and accumulation of K+ and Ca2+ and adjusting the transport capacity of mineral ions to aboveground parts, while K+ and Ca2+ levels are clearly decreased under high salt stress. With increasing salt concentrations, the net photosynthetic rate (Pn), transpiration rate (E) and stomatal conductance (gs) of leaves decrease gradually overall, and the intercellular CO2 concentration (Ci) first decreases and then increases. When the NaCl concentration is < 342mM, the decrease in leaf Pn is primarily restricted by the stomata. When the NaCl concentration is > 342mM, the decrease in the Pn is largely inhibited by non-stomatal factors. Due to the salt stress environment, the OJIP curve (Rapid chlorophyll fluorescence) of Salix alba turns into an OKJIP curve. When the NaCl concentration is > 171mM, the fluorescence values of points I and P decrease significantly, which is accompanied by a clear inflection point (K). The quantum yield and energy distribution ratio of the PSⅡ reaction center change significantly (φPo, Ψo and φEo show an overall downward trend while φDo is promoted). The performance index and driving force (PIABS, PICSm and DFCSm) decrease significantly when the NaCl concentration is > 171mM, indicating that salt stress causes a partial inactivation of the PSII reaction center, and the functions of the donor side and the recipient side are damaged. Conclusion The above results indicate that Salix alba can respond to salt stress by intercepting Na+ in the roots, improving the selective absorption of K+ and Ca2+ and the transport capacity to the above ground parts of the plant, and increasing φDo, thus shows an ability to self-regulate and adapt.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alberto Domínguez-Vicent ◽  
Emma Helghe ◽  
Marika Wahlberg Ramsay ◽  
Abinaya Priya Venkataraman

Purpose: The aim of this study was to evaluate the effect of four different filters on contrast sensitivity under photopic and mesopic conditions with and without glare.Methods: A forced choice algorithm in a Bayesian psychophysical procedure was utilized to evaluate the spatial luminance contrast sensitivity. Five different spatial frequencies were evaluated: 1.5, 3, 6, 12, and 18 cycles per degree (cpd). The measurements were performed under 4 settings: photopic and mesopic luminance with glare and no glare. Two long pass filters (LED light reduction and 511nm filter) and two selective absorption filters (ML41 and emerald filter) and a no filter condition were evaluated. The measurements were performed in 9 young subjects with healthy eyes.Results: For the no filter condition, there was no difference between glare and no glare settings for the photopic contrast sensitivity measurements whereas in the mesopic setting, glare reduced the contrast sensitivity significantly at all spatial frequencies. There was no statistically significant difference between contrast sensitivity measurements obtained with different filters under both photopic conditions and the mesopic glare condition. In the mesopic no glare condition, the contrast sensitivity at 6 cpd with 511, ML41 and emerald filters was significantly reduced compared to no filter condition (p = 0.045, 0.045, and 0.071, respectively). Similarly, with these filters the area under the contrast sensitivity function in the mesopic no glare condition was also reduced. A significant positive correlation was seen between the filter light transmission and the average AULCSF in the mesopic non-glare condition.Conclusion: The contrast sensitivity measured with the filters was not significantly different than the no filter condition in photopic glare and no glare setting as well as in mesopic glare setting. In mesopic setting with no glare, filters reduced contrast sensitivity.


Sign in / Sign up

Export Citation Format

Share Document