Corrigendum to “Thermal conductivity of concrete at high temperatures for thermal energy storage applications: Experimental analysis” [Sol. Energy 214 (2021) 430–442]

Solar Energy ◽  
2021 ◽  
Author(s):  
T. Lucio-Martin ◽  
M. Roig-Flores ◽  
M. Izquierdo ◽  
M.C. Alonso
Author(s):  
Aitor Zabalegui ◽  
Bernadette Tong ◽  
Hohyun Lee

Phase change materials (PCMs) are promising for thermal energy storage applications, but low thermal conductivity limits their heat exchange rate with a working fluid. The nanofluid approach has been established as a method of thermal conductivity enhancement, but particle addition may have an adverse effect on specific energy storage capacity. Latent heat reduction beyond traditional theory has been observed experimentally for carbon nanotubes dispersed in paraffin wax. Nanofluid latent heat and effective thermal conductivity were analyzed to investigate the effects of particle addition on thermal properties affecting PCM energy storage performance. It is shown that particle diameter significantly impacts nanofluid latent heat, with smaller particles generating greater degrees of reduction, but has a negligible effect on thermal conductivity. A method to approximate nanofluid latent heat of fusion is presented, considering the diameter-dependent reduction observed.


2014 ◽  
Author(s):  
Harish Sivasankaran ◽  
Yasuyuki Takata ◽  
Masamichi Kohno

The power dissipation capacity of organic phase change materials (PCM) which is used for thermal energy storage applications is hindered by its low thermal conductivity. In this work we demonstrate that inclusion of few layer graphene nanoplatelets dramatically increase the thermal conductivity of the PCM upon solidification. The dramatic thermal conductivity increase stems from the fact that the graphene nanoplatelets are entrapped within the grain boundaries upon solidification of the crystalline structures thereby increasing the percolation pathways. We also show that the enhancement in thermal conductivity is beyond the predictions of effective medium theory. The present work introduces an efficient way to enhance the thermal conductivity of nanocomposites using few layer graphene by effectively controlling the heat transport path simply upon solidification. Such a phase change material with enhanced thermal conductivity makes it a promising candidate for thermal energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document