Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest

2021 ◽  
Vol 229 ◽  
pp. 111140
Author(s):  
Huan Liu ◽  
Zhiheng Zheng ◽  
Zhiqiang Qian ◽  
Qianwei Wang ◽  
Dezhen Wu ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 584
Author(s):  
Liu Wu ◽  
Jianqiang Li ◽  
Hui Wang ◽  
Ying Zhang ◽  
Shaowei Feng ◽  
...  

Sodium acetate trihydrate (SAT) phase change material (PCM) has been well known for thermal energy storage due to its high latent heat and resource abundance. However, SAT suffers from severe latent heat reduction after heating and cooling cycles. Although a few of previous researches showed the reduction could be effectively inhibited by using thickeners, the mechanisms of the reduction process and thickeners’ inhibition have not been deeply explored till now. In this work, SAT modified by 5 wt.% nucleating agent of disodium hydrogen phosphate dodecahydrate (SAT/5 wt.% DSP) was prepared and 200 thermal cycles were carried out. The differential scanning calorimeter, Rheometer, X-ray diffractometry, and scanning electron microscope were used to investigate the extent of latent heat reduction, viscosity, phase composition and microstructure, respectively, and the infrared thermal imaging method was used to evaluate heat storage capacity. It was found that the latent heat of SAT/5 wt.% DSP dropped dramatically and the relative decrease in latent heat was measured to be 22.44%. The lower layer of SAT/5 wt.% DSP contained 24.1 wt.% CH3COONa, which was quantitatively consistent with the reduction extent. Furthermore, the phase change endothermic time of the lower layer was only 44.1% of that of the upper. SAT/5 wt.% DSP was further modified by 3 wt.% thickener of carboxymethyl cellulose (SAT/5 wt.% DSP/3 wt.% CMC) and endured 200 thermal cycles. The extent of the latent heat reduction of SAT/5 wt.% DSP/3 wt.% CMC was only 9.29%, and phase compositions were more homogeneous. The 3 wt.% CMC increased viscosity by 14 times, which effectively prevented the Stokes sedimentation velocity of CH3COONa in melts and inhibited the final macroscopic phase separation.


2011 ◽  
Vol 399-401 ◽  
pp. 1302-1306 ◽  
Author(s):  
Wei Hua Li ◽  
Jin Feng Mao ◽  
Li Jun Wang ◽  
Lu Yan Sui

The aim of the paper is to analyze the effect of the additives on thermal conductivity of the phase change material. The experiment about heat storage and heat release performance of the composite phase change material which uses sodium acetate trihydrate as host material is studied. The effect of the expanded graphite on the composite phase change material is investigated. The results show that: expanded graphite which can be dispersed evenly in the composite phase change material, the thermal stability is well, significantly improve the thermal conductivity of the composite phase change material.


Sign in / Sign up

Export Citation Format

Share Document