nucleating agent
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 199)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Khunanya Janchai ◽  
Takumitsu Kida ◽  
Takahiro Inoue ◽  
Shohei Iwasaki ◽  
Masayuki Yamaguchi

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 224
Author(s):  
Siyu Pan ◽  
Zhiguo Jiang ◽  
Zhaobin Qiu

Poly(ethylene succinate-co-1,2-propylene succinate) (PEPS) is a novel aliphatic biodegradable polyester with good mechanical properties. Due to the presence of methyl as a side group, the crystallization rate of PEPS is remarkably slower than that of the poly(ethylene succinate) homopolymer. To promote the potential application of PEPS, the effect of cellulose nanocrystals (CNC) on the crystallization behavior, crystalline morphology, and crystal structure of PEPS was investigated in this research with the aim of increasing the crystallization rate. CNC enhanced both the melt crystallization behavior of PEPS during the cooling process and the overall crystallization rate during the isothermal crystallization process. The crystallization rate of PEPS became faster with an increase in CNC content. The crystalline morphology study directly confirmed the heterogeneous nucleating agent role of CNC. The crystal structure of PEPS remained unchanged in the composites. On the basis of the interfacial energy, the nucleation mechanism of PEPS in the composites was further discussed by taking into consideration the induction of CNC.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateus Garcia Rodolfo ◽  
Lidiane Cristina Costa ◽  
Juliano Marini

Abstract Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.


2022 ◽  
Vol 58 (4) ◽  
pp. 73-83
Author(s):  
Hao Huang ◽  
Shuang-Qing Liu ◽  
Cheng-Pei Li ◽  
Shi-Tianle Luo ◽  
Li-Sha Zhao ◽  
...  

In this study, a new organic nucleating agent N, N -bis(stearic acid)-1,4-dicarboxybenzene dihydrazide (PASH) to improve crystallization behavior of poly(L-lactic acid) (PLLA) along with the effect of PASH on melting behavior, thermal stability of PASH-nucleated PLLA was holistically reported. The melt-crystallization process illustrated that PASH as an effective heterogeneous nucleating agent could boost PLLA�s crystallization rate, but increasing PASH concentration and cooling rate conversely inhibited melt-crystallization process of PLLA in this study. With respect to melt-crystallization process, a larger amount of PASH leaded to a shift of cold-crystallization peak to lower temperature level. Isothermal crystallization revealed, in comparison to pure PLLA, that the half time of overall crystallization of PLLA/PASH was significantly decreased with PLLA containing 3 wt% PASH having the minimum t1/2= 67.3 s at 105şC. The different melting behaviors of PLLA/PASH under different conditions were attributed to the nucleating effect of PASH within PLLA. In particular, the melting behavior at a heating rate of 10�C/min after isothermal crystallization depended primarily on the crystallization temperature. Whereas, the impact of crystallization time on melting behavior was negligible. Nonetheless, the melting behavior was influenced by the heating rate after non-isothermal crystallization. The thermal stability of PLLA was detrimental with the addition of PASH owing to a typical drop in onset thermal decomposition temperature.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Jiunn-Jer Hwang ◽  
Su-Mei Huang ◽  
Wen-Yang Lin ◽  
Hsin-Jiant Liu ◽  
Cheng-Chan Chuang ◽  
...  

This study makes use of polycondensation to produce poly (L-lactic acid)-(polyethylene glycols), a biodegradable copolymer, then puts it with organically modified montmorillonite (o-MMT) going through an intercalation process to produce a series of nanocomposites of PLLA-PEG/o-MMT. The exfoliation and intercalation of the montmorillonite-layered structure could be found through X-ray diffraction and transmission electron microscopy. The lower the molecular weight of poly (ethylene glycol), the more obvious the exfoliation and dispersion. The nanocomposites were investigated under non-isothermal crystallization and isothermal crystallization separately via differential scanning calorimetry (DSC). After the adding of o-MMT to PLLA-PEG copolymers, it was found that the PLLA-PEG nanocomposites crystallized slowly and the crystallization peak tended to become broader during the non-isothermal crystallization process. Furthermore, the thermal curve of the non-isothermal melt crystallization process of PLLA-PEG copolymers with different proportions of o-MMT showed that the melting point decreased gradually with the increase of o-MMT content. In the measurement of isothermal crystallization, increasing the o-MMT of the PLLA-PEG copolymers would increase the t1/2 (crystallization half time) for crystallization and decrease the value of ΔHc. However, the present study results suggest that adding o-MMT could affect the crystallization rate of PLLA-PEG copolymers. The o-MMT silicate layer was uniformly dispersed in the PLLA-PEG copolymers, forming a nucleating agent. The crystallization rate and the regularity of the crystals changed with the increase of the o-MMT content, which further affected the crystallization enthalpies.


Author(s):  
Tatyana Ageyeva ◽  
József Gábor Kovács ◽  
Tamás Tábi

AbstractWe selected the thirteen most effective nucleating agents for Poly(lactic acid) (PLA) from the literature, and synthesized and compounded them with two different PLA grades: 3001D (1.4% D-lactide content) and 3100HP (0.5% D-lactide content, considered PLLA). We determined the crystallinity and crystallization of PLA with different nucleating agents in identical conditions (same nucleating agent content, same cooling rate) with the help of differential scanning calorimetry. We compared the efficiency of each nucleating agent and found that for both PLA grades, Zinc PhenylPhosphonate was the most effective. However, even when nucleated PLA was injection molded into a cold mold (25 °C), it still could not fully crystallize during cooling and the heat deflection temperature did not increase significantly. The maximum achieved crystallinity, in this case, was between 32.4 and 35.7%. On the contrary, when a 90 °C “hot mold” and in-mold crystallization together were applied, the specimens achieved full crystallization during the injection molding cycle (crystallinity was between 44.5 and 50.0%), and the heat deflection temperature increased to an average of 88.8 °C. We also examined the mechanical properties of the nucleated PLA and found that the usage of nucleating agents together with a hot mold improved tensile strength, tensile modulus, and Charpy impact strength but decreased elongation at break.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1543
Author(s):  
Juan Li ◽  
Zhaohua Liang ◽  
Chengtao Gao ◽  
Shanshan Luo ◽  
Shaowen Huang ◽  
...  

Two kinds of organic phosphate nucleating agent (NA-11 and NA-21) were used in PP with different molecular weights through the melt extrusion method. The dispersibility of the nucleating agents in PP, and the effect of the nucleating agents on the molecular weight, rheological behavior and crystallization behavior of PP were investigated. SEM and TEM analysis showed that the average radius of the dispersed particles (nucleating agents) was larger in LPP than that in HPP. The good dispersion of NA-21 also created more nucleation embryos for the adsorption of polypropylene molecules than the agglomerated NA-11. The gel permeation chromatography (GPC) analysis showed that the average molecular weight of HPP and LPP both decreased with the addition of a nucleating agent. The rotational rheometer and capillary rheometer analysis showed that the effect of NA-21 on reducing intermolecular entanglement was more significant, whether in HPP or LPP. The addition of NA-21 had less elastic energy storage and better flow stability, and could be processed at a higher speed. Simultaneously, the relaxation time in the blends with LPP was shorter than that with HPP. It was found that the crystallinity and nucleation efficiency of HPP/nucleating agent blends increased remarkably, while there was a barely perceptible increase in LPP/nucleating agent blends.


Sign in / Sign up

Export Citation Format

Share Document