Consistency and asymptotic normality of the maximum likelihood estimates in reproductive dispersion linear models

2006 ◽  
Vol 76 (11) ◽  
pp. 1137-1146 ◽  
Author(s):  
Tian Xia ◽  
Nian-Sheng Tang ◽  
Xue-Ren Wang
1986 ◽  
Vol 23 (A) ◽  
pp. 275-289 ◽  
Author(s):  
David R. Brillinger

The model Y(t) = s(t | θ) + ε(t) is studied in the case that observations are made at scattered points τ j in a subset of Rp and θ is a finite-dimensional parameter. The particular cases of 0 = (α, β) and (α, β, ω) are considered in detail. Consistency and asymptotic normality results are developed assuming that the spatial series ε(·) and the point process {τ j} are independent, stationary and mixing. The estimates considered are equivalent to least squares asymptotically and are not generally asymptotically efficient.Contributions of the paper include: study of the Rp case, management of irregularly placed observations, allowance for abnormal domains of observation and the discovery that aliasing complications do not arise when the point process {τ j} is mixing. There is a brief discussion of the construction and properties of maximum likelihood estimates for the spatial-temporal case.


1986 ◽  
Vol 23 (A) ◽  
pp. 275-289
Author(s):  
David R. Brillinger

The model Y(t) = s(t | θ) + ε(t) is studied in the case that observations are made at scattered points τ j in a subset of Rp and θ is a finite-dimensional parameter. The particular cases of 0 = (α, β) and (α, β, ω) are considered in detail. Consistency and asymptotic normality results are developed assuming that the spatial series ε(·) and the point process {τ j } are independent, stationary and mixing. The estimates considered are equivalent to least squares asymptotically and are not generally asymptotically efficient. Contributions of the paper include: study of the Rp case, management of irregularly placed observations, allowance for abnormal domains of observation and the discovery that aliasing complications do not arise when the point process {τ j } is mixing. There is a brief discussion of the construction and properties of maximum likelihood estimates for the spatial-temporal case.


Author(s):  
P. H. Diananda

The properties of (1) consistency and (2) asymptotic normality of maximum likelihood estimates of one unknown parameter, for independent observations, have been discussed rigorously by Cramér ((1), p. 500) and Doob (2). These properties were first stated by Fisher (3).


Sign in / Sign up

Export Citation Format

Share Document