A Laplace transform method for order statistics from nonidentical random variables and its application in Phase-type distribution

2011 ◽  
Vol 81 (8) ◽  
pp. 1143-1149 ◽  
Author(s):  
Yousry H. Abdelkader
2018 ◽  
Vol 6 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Femin Yalcin ◽  
Serkan Eryilmaz ◽  
Ali Riza Bozbulut

AbstractIn this paper, a generalized class of run shock models associated with a bivariate sequence {(Xi, Yi)}i≥1 of correlated random variables is defined and studied. For a system that is subject to shocks of random magnitudes X1, X2, ... over time, let the random variables Y1, Y2, ... denote times between arrivals of successive shocks. The lifetime of the system under this class is defined through a compound random variable T = ∑Nt=1 Yt , where N is a stopping time for the sequence {Xi}i≤1 and represents the number of shocks that causes failure of the system. Another random variable of interest is the maximum shock size up to N, i.e. M = max {Xi, 1≤i≤ N}. Distributions of T and M are investigated when N has a phase-type distribution.


2010 ◽  
Vol 40 (1) ◽  
pp. 281-306 ◽  
Author(s):  
Andrew C.Y. Ng

AbstractIn this paper, we consider the dual of the classical Cramér-Lundberg model when gains follow a phase-type distribution. By using the property of phase-type distribution, two pairs of upcrossing and downcrossing barrier probabilities are derived. Explicit formulas for the expected total discounted dividends until ruin and the Laplace transform of the time of ruin under a variety of dividend strategies can then be obtained without the use of Laplace transforms.


1994 ◽  
Vol 8 (1) ◽  
pp. 21-31
Author(s):  
Rhonda Richter ◽  
J. George Shanthikumar

We consider stopping times associated with sequences of non-negative random variables and Poisson processes. With sufficient conditions on the dependence property between the sequences of non-negative random variables (or the Poisson processes) and the stopping times, we develop easily computable stochastic bounds for the stopping times. We use these bounds to develop approximations within the class of generalized phase-type distribution functions for arbitrary distribution functions. The computational tractability of generalized phase-type distribution functions facilitate the computational analysis of complex stochastic systems using these approximate distribution functions. Applications of these approximations to renewal processes are illustrated.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4449-4455
Author(s):  
Shu-Xian Deng ◽  
Xin-Xin Ge

The main objective of the present article is to introduce a new analytical solution of the local fractional Landau-Ginzburg-Higgs equation on fractal media by means of the local fractional variational iteration transform method, which is coupling of the variational iteration method and Yang-Laplace transform method.


Sign in / Sign up

Export Citation Format

Share Document