scholarly journals Gradient and stability estimates of heat kernels for fractional powers of elliptic operator

2018 ◽  
Vol 142 ◽  
pp. 44-49
Author(s):  
Yong Chen ◽  
Yaozhong Hu ◽  
Zhi Wang
2016 ◽  
Vol 31 (3) ◽  
pp. 47-53
Author(s):  
M.M. Sirazhudinov ◽  
◽  
S.P. Dzhamaludinova ◽  
M.E. Mahmudova ◽  
◽  
...  

2017 ◽  
Vol 272 (8) ◽  
pp. 3311-3346 ◽  
Author(s):  
Alexander Grigor'yan ◽  
Eryan Hu ◽  
Jiaxin Hu

2021 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Emilia Bazhlekova

An initial-boundary-value problem is considered for the one-dimensional diffusion equation with a general convolutional derivative in time and nonclassical boundary conditions. We are concerned with the inverse source problem of recovery of a space-dependent source term from given final time data. Generalized eigenfunction expansions are used with respect to a biorthogonal pair of bases. Existence, uniqueness and stability estimates in Sobolev spaces are established.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Aleksey Kostenko

AbstractFor the discrete Laguerre operators we compute explicitly the corresponding heat kernels by expressing them with the help of Jacobi polynomials. This enables us to show that the heat semigroup is ultracontractive and to compute the corresponding norms. On the one hand, this helps us to answer basic questions (recurrence, stochastic completeness) regarding the associated Markovian semigroup. On the other hand, we prove the analogs of the Cwiekel–Lieb–Rosenblum and the Bargmann estimates for perturbations of the Laguerre operators, as well as the optimal Hardy inequality.


2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


Sign in / Sign up

Export Citation Format

Share Document