scholarly journals Regularity theorems for fractional powers of a linear elliptic operator

1962 ◽  
Vol 79 ◽  
pp. 449-471 ◽  
Author(s):  
Takeshi Kotake ◽  
Mudumbai S. Narasimhan
1967 ◽  
Vol 19 ◽  
pp. 667-672 ◽  
Author(s):  
Hajimu Ogawa

Let P be the parabolic differential operatorwhere E is a linear elliptic operator of second order on D × [0, ∞), D being a bounded domain in Rn. The asymptotic behaviour of solutions u(x, t) of differential inequalities of the form1has been investigated by Protter (4). He found conditions on the functions ƒ and g under which solutions of (1), vanishing on the boundary of D and tending to zero with sufficient rapidity as t → ∞, vanish identically for all t ⩾ 0. Similar results have been found by Lees (1) for parabolic differential inequalities in Hilbert space.


2016 ◽  
Vol 31 (3) ◽  
pp. 47-53
Author(s):  
M.M. Sirazhudinov ◽  
◽  
S.P. Dzhamaludinova ◽  
M.E. Mahmudova ◽  
◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


2021 ◽  
Author(s):  
Tim Binz

AbstractWe consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ C ( ∂ M ) of continuous functions on the boundary $$\partial M$$ ∂ M of a compact manifold $$\overline{M}$$ M ¯ with boundary. We prove that it generates an analytic semigroup of angle $$\frac{\pi }{2}$$ π 2 , generalizing and improving a result of Escher with a new proof. Combined with the abstract theory of operators with Wentzell boundary conditions developed by Engel and the author, this yields that the corresponding strictly elliptic operator with Wentzell boundary conditions generates a compact and analytic semigroups of angle $$\frac{\pi }{2}$$ π 2 on the space $$\mathrm {C}(\overline{M})$$ C ( M ¯ ) .


Sign in / Sign up

Export Citation Format

Share Document