scholarly journals Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy

2019 ◽  
Vol 12 (3) ◽  
pp. 597-610 ◽  
Author(s):  
Sang-Bing Ong ◽  
Won Hee Lee ◽  
Ning-Yi Shao ◽  
Nur Izzah Ismail ◽  
Khairunnisa Katwadi ◽  
...  
2017 ◽  
Vol 70 (16) ◽  
pp. C10-C11
Author(s):  
Sang-Bing Ong ◽  
Won Hee Lee ◽  
Nur Izzah Ismail ◽  
Khairunnisa Katwadi ◽  
Xiu Yi Kwek ◽  
...  

2021 ◽  
Vol 3 ◽  
pp. 100007
Author(s):  
Kathleen L. Miller ◽  
Yi Xiang ◽  
Claire Yu ◽  
Jacob Pustelnik ◽  
Jerry Wu ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 812
Author(s):  
Shimeng Qiu ◽  
Yaling Li ◽  
Yuki Imakura ◽  
Shinji Mima ◽  
Tadahiro Hashita ◽  
...  

The endoderm, differentiated from human induced pluripotent stem cells (iPSCs), can differentiate into the small intestine and liver, which are vital for drug absorption and metabolism. The development of human iPSC-derived enterocytes (HiEnts) and hepatocytes (HiHeps) has been reported. However, pharmacokinetic function-deficiency of these cells remains to be elucidated. Here, we aimed to develop an efficient differentiation method to induce endoderm formation from human iPSCs. Cells treated with activin A for 168 h expressed higher levels of endodermal genes than those treated for 72 h. Using activin A (days 0–7), CHIR99021 and PI−103 (days 0–2), and FGF2 (days 3–7), the hiPSC-derived endoderm (HiEnd) showed 97.97% CD−117 and CD−184 double-positive cells. Moreover, HiEnts derived from the human iPSC line Windy had similar or higher expression of small intestine-specific genes than adult human small intestine. Activities of the drug transporter P-glycoprotein and drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5 were confirmed. Additionally, Windy-derived HiHeps expressed higher levels of hepatocyte- and pharmacokinetics-related genes and proteins and showed higher CYP3A4/5 activity than those derived through the conventional differentiation method. Thus, using this novel method, the differentiated HiEnts and HiHeps with pharmacokinetic functions could be used for drug development.


2021 ◽  
Vol 52 ◽  
pp. 102206
Author(s):  
Alexandra Haase ◽  
Tim Kohrn ◽  
Veronika Fricke ◽  
Maria Elena Ricci Signorini ◽  
Merlin Witte ◽  
...  

Author(s):  
Damián Hernández ◽  
Louise A. Rooney ◽  
Maciej Daniszewski ◽  
Lerna Gulluyan ◽  
Helena H. Liang ◽  
...  

2021 ◽  
pp. 102443
Author(s):  
Cathelijn E.M. Aarts ◽  
Eszter Varga ◽  
Steven Webbers ◽  
Judy Geissler ◽  
Marieke von Lindern ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Sign in / Sign up

Export Citation Format

Share Document