double positive
Recently Published Documents


TOTAL DOCUMENTS

1055
(FIVE YEARS 313)

H-INDEX

75
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yosuke Tanaka ◽  
Reina Takeda ◽  
Tsuyoshi Fukushima ◽  
Keiko Mikami ◽  
Shun Tsuchiya ◽  
...  

AbstractLeukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


2022 ◽  
Author(s):  
Nicholas J Hess ◽  
David P Turicek ◽  
Kalyan Nadiminti ◽  
Amy Hudson ◽  
Peiman Hematti ◽  
...  

Acute graft-vs-host disease (aGVHD) and tumor relapse remain the primary complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT) for malignant blood disorders. While post-transplant cyclophosphamide has reduced the overall prevalence and severity of aGVHD, relapse rates remain a concern. Thus, there remains a need to identify the specific human T cell subsets mediating GVHD pathology versus graft-versus-leukemia (GVL) effects. In xenogeneic transplantation studies using primary human cells from a variety of donors and tissue sources, we observed the development of a mature CD4+/CD8αβ+ double positive T cell (DPT) population in mice succumbing to lethal aGVHD but not in mice that failed to develop aGVHD. The presence of DPT, irrespective of graft source, was predictive of lethal GVHD as early as one week after xenogeneic transplantation. DPT co-express the master transcription factors of the CD8 and CD4 lineages, RUNX3 and THPOK respectively, and produce both cytotoxic and modulatory cytokines. To identify the origin of DPT, we transplanted isolated human CD4 or CD8 T cells, which in turn revealed that DPT only arise from the CD8 pool. Interestingly, re-transplantation of sorted CD8 T cells from GVHD mice did not reveal a second wave of DPT differentiation. Re-transplantation of flow-sorted DPT, CD8 or CD4 T cells from GVHD mice revealed that DPT are sufficient to mediate GVHD pathology but not GVL effects versus B-cell acute lymphoblastic leukemia. Lastly, we confirmed the presence and correlation of DPT with aGVHD pathology in a small cohort of allo-HSCT patients that developed grade 2-4 aGVHD in our clinic. Further understanding of DPT differentiation and pathology may lead to targeted prophylaxis and/or treatment regimens for aGVHD and potentially other human chronic inflammatory diseases.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Chengcheng Xu ◽  
Meng Bao ◽  
Xiaorong Fan ◽  
Jin Huang ◽  
Changhong Zhu ◽  
...  

Abstract Background Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. Methods Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. Results Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. Conclusions Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Ying Zhou ◽  
Yongfeng Liu ◽  
Ying Wen

Abstract Background Reactivation of latent Toxoplasma gondii (T. gondii) infection is more common than primary infection in patients with human immunodeficiency virus (HIV). We report a rare case of primary T. gondii infection-associated hemophagocytic syndrome (HPS). Case presentation A man with HIV infection presented with fever, dyspnea and pancytopenia. He was diagnosed with primary T. gondii infection by the seroconversion from single-positive IgM antibody to double-positive IgM and IgG antibody. Metagenomic next-generation sequencing (mNGS) of a plasma sample yielded high reads of T. gondii DNA. He responded well to combined anti-Toxoplasma medicines and glucocorticoid treatment. Conclusions In patients with HPS and positive T. gondii IgM antibody, mNGS analysis of a peripheral blood sample is helpful in diagnosing disseminated T. gondii infection. The dynamic changes by serological detection for IgM and IgG of T. gondii further supported the inference that the patient has experienced a primary T. gondii infection.


2022 ◽  
Author(s):  
Sonja Fixemer ◽  
Corrado Ameli ◽  
Gael P. Hammer ◽  
Luis M. Salamanca ◽  
Oihane Uriarte Huarte ◽  
...  

Hippocampal alteration is at the centre of memory decline in the most common age-related neurodegenerative diseases: Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). However, the subregional deterioration of the hippocampus differs between both diseases with more severe atrophy in the CA1 subfield of the AD patients. How AD and DLB-typical pathologies compose the various local microenvironment of the hippocampus across AD and DLB needs to be further explored to understand this process. Additionally, microglia responses could further impact the atrophy rate. Some studies suggest that microglia react differently according to the underlying neurodegenerative disorder. How microglia are transformed across hippocampal subfields in AD and DLB, and how their changes are associated with disease-typical pathologies remains to be determined. To these purposes, we performed a volumetric analysis of phospho-Tau (P-Tau), Amyloid-beta (Abeta), and phospho-alpha-Synuclein (P-Syn) loads, quantified and classified microglia according to distinct morphological phenotypes using high-resolution confocal 3D microscopy of hippocampal CA1, CA3 and DG/CA4 subfields of late-onset AD (n=10) and DLB (n=8) as well as age-matched control samples (n=11). We found that each of the Tau, Abeta and Synuclein pathologies followed a specific subregional distribution, relatively preserved across AD and DLB. P-Tau, Abeta and P-Syn burdens were significantly exacerbated in AD, with Tau pathology being particularly severe in the AD CA1. P-Tau and P-Syn burdens were highly correlated across subfields and conditions (R2Spear = 0.79; P < 0.001) and result from a local co-distribution of P-Tau and P-Syn inclusions in neighbouring neurons, with only a low proportion of double-positive cells. In parallel, we assessed the changes of the microglia responses by measuring 16 morphological features of more than 35,000 individual microglial cells and classifying them into seven-distinct morphological clusters. We found microglia features- and clusters-variations subfield- and condition-dependent. Two of the seven morphological clusters, with more amoeboid and less branched forms, were identified as disease-enriched and found to be further increased in AD. Interestingly, some microglial features or clusters were associated with one but more often with a combination of two pathologies in a subfield-dependent manner. In conclusion, our study shows a multimodal association of the hippocampal microglia responses with the co-occurrence, distribution and severity of AD and DLB pathologies. In DLB hippocampi, pathological imprint and microglia responses follow AD trends but with lesser severity. Our study suggests that the increased pathological burdens of P-Tau and P-Syn and associated microglia alterations are involved in a more severe deterioration of the CA1 in AD as compared to DLB.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Esther Dawen Yu ◽  
Hao Wang ◽  
Ricardo da Silva Antunes ◽  
Yuan Tian ◽  
Rashmi Tippalagama ◽  
...  

According to the WHO 2009 classification, dengue with warning signs is at the risk of developing severe form of dengue disease. One of the most important warning signs is plasma leakage, which can be a serious complication associated with higher morbidity and mortality. We report that the frequency of CD4+CD8+ double-positive (DP) T cells is significantly increased in patients at risk of developing plasma leakage. Transcriptomic analysis demonstrated that CD4+CD8+ DP cells were distinct from CD4+ Single Positive (SP) T cells but co-clustered with CD8+ SP cells, indicating a largely similar transcriptional profile. Twenty significant differentially expressed (DE) genes were identified between CD4+CD8+ DP and CD8+ SP cells. These genes encode OX40 and CCR4 proteins as well as other molecules associated with cell signaling on the cell surface (NT5E, MXRA8, and PTPRK). While comparing the profile of gene expression in CD4+CD8+ DP cells from patients with and without warning signs of plasma leakage, similar expression profile was observed, implying a role of CD4+CD8+ DP cells in plasma leakage through a quantitative increase rather than functional alteration. This study provided novel insight into the host immune response during the acute febrile phase of DENV infection and the role of CD4+CD8+ DP T cells in the pathogenesis of plasma leakage.


2021 ◽  
Author(s):  
Shrish Raj ◽  
Nirmal Bisai ◽  
Vijay Shankar ◽  
Abhijit Sen ◽  
Joydeep Ghosh ◽  
...  

Abstract We present numerical simulation studies on impurity seeding using Nitrogen, Neon, and Argon gases. These impurity gases are ionized by the electron impact ionization. These ions can be at multiply ionized states, recombine again with the plasma electrons, and radiate energy. The radiation losses are estimated using a non-coronal equilibrium model. A set of 2D model equations to describe their self-consistent evolution are derived using interchange plasma turbulence in the edge and SOL regions and solved using BOUT++. It is found that impurity ions (with single or double-positive charges) move in the inward direction with a velocity ∼ 0.02cs so that these fluxes are negative. These fluxes are analyzed for different strengths of an effective gravity that help to understand the impurity ion dynamics. Increased gravity shows an accumulation of certain charged species in the edge region. The radiation loss is seen to have a fluctuation in time with frequency 5-20 kHz that closely follows the behavior of the interchange plasma turbulence. The simulation results on the radiated power and its frequency spectrum compare favourably with observations on the Aditya-U tokamak. The negative fluxes of the impurity ions, their dynamics in the edge region, and the fluctuating nature of the radiation loss are the most important results of this work.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Taruni Pandhiri ◽  
Santhosh Kumar Pasupuleti ◽  
Baskar Ramdas ◽  
Rahul Kanumuri ◽  
Reuben Kapur

Obesity is an increasing epidemic disease world-wide responsible for enhancing the risk for developing Type 2 diabetes mellitus (T2DM) as well as cancer. However, it is unclear if and how obesity contributes to the transformation of pre-leukemic stem and progenitors (pre-LHSC/Ps) into full-blown leukemia such as acute myeloid leukemia (AML) or severe form of myeloproliferative neoplasm (MPN). We hypothesized that obesity induced chronic inflammation might be responsible for clonal selection of pre-LHSC/Ps bearing pre-leukemic mutations such as DNA methyltransferase 3A (DNMT3A) and for promoting the progression of early-onset MPN towards severe forms of AML/leukemia. To test this hypothesis, we genetically crossed pre-leukemic Dnmt3a+/-;Mx-Cre+ mice with leptin deficient obese (LepOb/Ob) mice to obtain Ob/Ob;Dnmt3a+/-;Mx-Cre+ compound mutant mice. Further, the Dnmt3a gene was deleted by giving the PolyIC and the deletion was confirmed through PCR. After 12 days of post-PolyIC the myeloid cells (neutrophils and monocytes) were expanded in Ob/Ob;Dnmt3a+/-;Mx-Cre+ mice compared to Dnmt3a+/-;Mx-Cre+, Dnmt3a+/-;Mx-Cre-, Ob/Ob and WT mice. We have harvested and analyzed all these mice after 26 days of post-PolyIC. Interestingly, Ob/Ob;Dnmt3a+/-;Mx-Cre+ mice showed increased BM cellularity, both the frequency of lineage negative, Sca-1+ and c-KIT+ (LSK) cells, short-term hematopoietic stem cells (ST-HSCs; LSK/CD48+/CD150-), granulocyte macrophage progenitor (GMPs; LSK/CD16+/CD34+), and reduction in LT-HSCs (LT-HSCs; LSK/CD48-/CD150+) compared to other groups. Flow cytometry analysis of PB, BM and spleen from Ob/Ob;Dnmt3a+/-;Mx-Cre+ mice demonstrated a significant increase in the frequency of mature myeloid cells (Gr-1+/Mac-1+) and a profound reduction in B220+ B cells compared to other groups. Remarkably, these mice also showed splenomegaly, elevated heart size and early signs of AML blasts as reflected by the presence of c-KIT+/CD11b+ double positive cells in the BM, consistent with severe MPN/AML development. Taken together, these results demonstrate that obesity induced inflammation cooperates with pre-leukemic Dnmt3a+/- mutation to induce an early-onset of severe MPN/AML like disease.       


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1464
Author(s):  
Lex G. Medina-Magües ◽  
Janina Gergen ◽  
Edith Jasny ◽  
Benjamin Petsch ◽  
Jaime Lopera-Madrid ◽  
...  

Zika virus (ZIKV), a mosquito-borne flavivirus, has recently triggered global concern due to severe health complications. In 2015, a large ZIKV outbreak occurred in the Americas and established a link between ZIKV and microcephaly in newborn babies, spontaneous abortion, persistent viremia, and Guillain–Barré syndrome. While antivirals are being developed and prevention strategies focus on vector control, a safe and effective Zika vaccine remains unavailable. Messenger RNA (mRNA) vaccine technology has arisen as a flexible, simplified, and fast vaccine production platform. Here, we report on an mRNA vaccine candidate that encodes the pre-membrane and envelope (prM–E) glycoproteins of ZIKV strain Brazil SPH2015 and is encapsulated in lipid nanoparticles (LNPs). Our ZIKV prM–E mRNA-LNP vaccine candidate induced antibody responses that protected in AG129 mice deficient in interferon (IFN) alpha/beta/gamma (IFN-α/β/γ) receptors. Notably, a single administration of ZIKV prM–E mRNA-LNP protected against a lethal dose of ZIKV, while a two-dose strategy induced strong protective immunity. E-specific double-positive IFN-γ and TNF-α T-cells were induced in BALB/c mice after immunizations with a two-dose strategy. With the success of mRNA vaccine technology in facing the coronavirus (COVID-19) pandemic, our data support the development of prM–E RNActive® as a promising mRNA vaccine against Zika to counter future epidemics.


Sign in / Sign up

Export Citation Format

Share Document