Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat–soybean rotation

2007 ◽  
Vol 94 (2) ◽  
pp. 386-396 ◽  
Author(s):  
R BHATTACHARYYA ◽  
S CHANDRA ◽  
R SINGH ◽  
S KUNDU ◽  
A SRIVASTVA ◽  
...  
Soil Science ◽  
1999 ◽  
Vol 164 (9) ◽  
pp. 613-623 ◽  
Author(s):  
M. B. McBride ◽  
B. K. Richards ◽  
T. Steenhuis ◽  
G. Spiers

Author(s):  
Mohammed Aajmi Salman ◽  
Jawad A. Kamal Al-Shibani

Beneficial microorganisms play a key role in the availability of ions minerals in the soil and use Randomized Complete Block Desing ( R.C.B.D ). The objective of this paper to the study effect of the of biofertilizer and miniral treatments on availability of NPK for crop corn zea mays L.Two types of biofertilizer are Bacterial Bacillus subtilis and Fungal Trichoderma harianum. Three levels of potassium fertilizer are (2.9533, 0.4000 and 2.9533). A field experiment in fall season of 2018 Has been conducted in silty clay loam soil. The experimental Results indicated that Bacillus and Trichoderma inoculation separately or together Have made a significant effect to increase in the availability of N P K in the soil compare to other treatments. The grain yield is where (2.9533, 0.4000 and 2.9533) of bacterial and fungal bio-fertilizer and potassium fertilizers respectively as compared to the control.


Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

The objective was to quantify the effect of crop rotations, crop type, life cycle, nitrogen fertilizer, manure application, and fallow on soil hydrophobicity (SH). The SH was measured for a long-term (16 yr) dryland field experiment on a Dark Brown clay loam soil in southern Alberta, Canada. Mean SH was significantly (P ≤ 0.05) greater in rotations with grass, perennial crops, manure application, and continuous cropping; whereas cereal-legume rotations and N fertilizer effects were undetectable. A strong, positive correlation occurred between SH and soil organic carbon concentration (r=0.73). Soil water repellency should be measured on these plots using water-based methods.


2008 ◽  
Vol 88 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Hafida Zaher ◽  
Jean Caron

The slaking process after rapid wetting is a key factor controlling soil structural stability in dry soil, and an understanding of the relative importance of the different mechanisms involved in slaking may help in the design of management strategies aimed at maintaining a stable surface soil structure. Slaking has been linked to, among other factors, rapid pressure build-up in aggregate, and previous work has emphasized the role of organic matter to hamper that pressure build-up, possibly due to hydrophobicity, reducing rapid water entry within aggregates and hence the build-up. This study emphasizes this latter aspect linked to slaking. The evolution of the intra-aggregate pressure, the matter lost by slaking and the expelled air after rapid wetting of two soils of different textures (clay loam soil and silty-clay loam soil) amended with different types of paper sludge were studied. Hydrophobicity effects were also studied using a tensio-active solution. The results of these experiments showed that when aggregates were submitted to sudden wetting, those treated with paper sludge had an improved resistance to the destructive action of rapid wetting. The lower pressures measured in the aggregates from the amended soils and having less slaking resulted most likely from slow water entry and reduced swelling. Detailed investigation on the link between hydrophobicity and water entry revealed that the true hydrophobic effect (modification of contact angle) was non-existent for the silty-clay loam and minor for the clay loam. This study, rather, suggests that changes in the water potential at the wetting front following organic matter addition and aggregate immersion most likely depend on pore occlusion and on changes in pore surface roughness. Key words: Aggregate stability, organic matter, slaking, pressure, swelling, wettability


Weed Science ◽  
1974 ◽  
Vol 22 (6) ◽  
pp. 600-603 ◽  
Author(s):  
W. L. Barrentine

The competitive effects of common cocklebur (Xanthium pensylvanicumWallr.) on soybeans[Glycine max(L.) Merr. ‘Lee 68′] were studied on Dundee silty clay loam soil from 1970 to 1972. Full-season competition by common cocklebur at 3,300, 6,600, 13,000, and 26,000 plants/ha reduced the 2-year average soybean seed yields 10, 28, 43, and 52%, respectively. Competition from common cocklebur at 100,000 plants/ha for 4, 6, 8, 10, 12, and 16 weeks after soybean emergence reduced soybean seed yields 10, 36, 40, 60, 80, and 80%, respectively. A reduction in soybean stand occurred after 12 or more weeks competition, and an increase in soybean plant height occurred after 10 or more weeks competition. When common cockleburs were removed during the first 4 weeks after soybean emergence, no further removal was required to obtain maximum soybean yield. Bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one 2,2-dioxide] at 1.1 to 2.2 kg/ha applied over-the-top of common cockleburs and soybeans was as effective as hand removal in terminating competition provided common cocklebur plants were not flowering.


Sign in / Sign up

Export Citation Format

Share Document