A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites

2021 ◽  
Vol 212 ◽  
pp. 105074
Author(s):  
Hua Xu ◽  
Xin-Yu Wang ◽  
Chia-Nan Liu ◽  
Jian-Nan Chen ◽  
Chu Zhang
2010 ◽  
Vol 332 (1-2) ◽  
pp. 177-192 ◽  
Author(s):  
Daniel Leitner ◽  
Sabine Klepsch ◽  
Gernot Bodner ◽  
Andrea Schnepf

2021 ◽  
pp. 114251
Author(s):  
Elisa Bertolesi ◽  
Ernesto Grande ◽  
Mario Fagone ◽  
Gabriele Milani ◽  
Tommaso Rotunno
Keyword(s):  

1938 ◽  
Vol 15 (1) ◽  
pp. 114-131 ◽  
Author(s):  
J. W. S. PRINGLE

1. The campaniform sensilla on the legs of Periplaneta are similar in action to those on the palps, and respond to strains in the cuticle. 2. They are arranged in groups at the joints, with parallel orientation of the sensilla of a group. 3. Tests with various chemical substances show a complete absence of sensitivity to olfactory stimuli. 4. A theory is given of the mode of action of the sensilla in terms of a mechanical model based on their observed structure. Each group of parallel sensilla should act as a unit, responding to those forces which have a compression component of shear in the direction of their long diameters. 5. This theory makes it possible to predict the behaviour of the sensilla from their anatomical arrangement. Most if not all the groups on the legs are so arranged as to be sensitive to the forces present when the insect is standing on the ground. 6. The sensilla probably provide the basis for the sense of contact pressure postulated by Holst (1935), Hoffmann (1933), Crozier & Stier (1928-9), Fraenkel (1932) and others. 7. Comparison of this proprioceptive mechanism with that of the vertebrate limb reveals an absence of qualitative sensitivity that may have an important bearing on the question of the evolution of behaviour.


Author(s):  
Olga Petrenko ◽  
Mateu Sbert ◽  
Olivier Terraz ◽  
Djamchid Ghazanfarpour

Flowers belong to one of the natural phenomena that cannot be captured completely, as there is enormous variety of shapes both within and between individuals. The authors propose a procedural modeling of flowering plants using an extension of L-Systems – a model based on three-dimensional generalized maps. Conventionally, in order to build a model the user has to write the grammar, which consists of the description of 3Gmaps and all the production rules. The process of writing a grammar is usually quite laborious and tedious. In order to avoid this the authors propose new interface functionality: the inverse modeling by automatic generation of L-systems. The user describes the flower he wants to model, by assigning the properties of its organs. The algorithm uses this information as an input, which is then analyzed and coded as L-systems grammar.


2013 ◽  
Vol 838-841 ◽  
pp. 675-679 ◽  
Author(s):  
Miao Zhang ◽  
Fang Qing Chen ◽  
Jin Xia Zhang

Cynodon dactylon has become a dominant riparian species in the reservoir region after the Three Gorges project was finished. In order to determine the effect of the species in soil conservation and slope reinforcement and the variation over time, the soil erosion resistance and shear strength of plants soil-root systems were tested during different seasons in a year through control experiment. Results showed that C. dactylon roots enhanced significantly soil conservation and slope reinforcement. The tensile strength of C. dactylon roots reached from 65.34 to 91.22Kpa/mm2 after three to twelve month growth, so did the soil erosion resistance coefficient from 0.34 to 0.86, shear strength from 20.82 to 25.98Kpa increasing by 39.62%, 154.90% and 24.74% respectively. We conclude that the temporal dynamics of C. dactylon roots influenced the performance of soil-root system in soil conservation and slope reinforcement.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0212681
Author(s):  
Jérôme Molimard ◽  
Rébecca Bonnaire ◽  
Woo Suck Han ◽  
Reynald Convert ◽  
Paul Calmels

Sign in / Sign up

Export Citation Format

Share Document