scholarly journals Soil structure response to field traffic: Effects of traction and repeated wheeling

2021 ◽  
Vol 213 ◽  
pp. 105128
Author(s):  
L. ten Damme ◽  
P. Schjønning ◽  
L. J. Munkholm ◽  
O. Green ◽  
Søren K. Nielsen ◽  
...  
Author(s):  
Young-Sun Jang ◽  
Kwang-Ho Joo ◽  
Chong-Hak Kim

The SSI (Soil-Structure Interaction) analyses are being performed for the APR1400 (Advanced Power Reactor 1400MWe, Old name - KNGR ; Korean Next Generation Reactor) design, because the APR1400 is developed as a Standard Nuclear Power Plant concept enveloping suitable soil conditions. For the SSI analyses, SASSI program which adopts the Flexible Volume Method is used. In the SSI analyses, there can be uncertainties by Bond and De-bond problem between the structure and lateral soil elements. According to ASCE Standard 4, one method to address this concern is to assume no connectivity between structure and lateral soil over the upper half of the embedment of 20ft (6m), whichever is less. This study is performed as a part of the parametric analyses for the APR1400 seismic analyses to address the concern of the potential embedment effect on the in-structure response spectra due to connectivity between structure and lateral soil. In this study, 4 model cases are analyzed to check the potential embedment effect — Full connection, 20ft no connectivity which is defined as a minimum De-bond depth of the soil in ASCE Standard 4 and 26.5ft no connectivity between structure and lateral soil over the upper half of the embedment. Last one is full no connection for only reference. The in-structure response spectra are compared with the response spectra without considering the embedment effect.


1973 ◽  
Vol 63 (3) ◽  
pp. 1041-1056
Author(s):  
William Weaver ◽  
Gregg E. Brandow ◽  
Kaare Höeg

abstract Calculations for the dynamic response of multistory buildings to earthquake accelerations of bedrock should include the effects of the soil and the structural foundation. For this purpose a three-dimensional analytical model is developed, consisting of the following parts. The superstructure is modeled as a tier building (with rigid floor diaphragms, space frame members, bracing, and setbacks); the foundation is approximated by a rigid block in combination with piles (prismatic members with pinned ends), and the soil is idealized by a finite-element mesh (three-dimensional rectangular prisms) with special boundary conditions (viscous damping at lateral boundaries and a rigid boundary at bedrock). This analytical model is incorporated into a computer program, which performs response analyses for specified earthquakes. Sample problems are included to demonstrate the capabilities of both the analytical model and the computer program. The results show that the combination of a three-dimensional analytical model and the presence of underlying soil has important influences on the calculated responses of multistory buildings to earthquakes.


1993 ◽  
Vol 25 (6) ◽  
pp. 693-697 ◽  
Author(s):  
Shlomo Sarig ◽  
Emily B. Roberson ◽  
Mary K. Firestone

2018 ◽  
Vol 1 (3) ◽  
pp. 331-343
Author(s):  
Hajime Okano ◽  
Tatsuya Azuhata ◽  
Namihiko Inoue ◽  
Masanori Iiba ◽  
Toshihide Kashima ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 526 ◽  
Author(s):  
Van-Linh Ngo ◽  
Jae-Min Kim ◽  
Soo-Hyuk Chang ◽  
Changho Lee

: In a megacity, structure response during an earthquake could be increased or decreased due to effects from neighboring structures, through structure-soil-structure interaction (SSSI). In the present study, a series of dynamic geotechnical centrifuge tests are carried out to investigate SSSI effects on responses of structure with various characteristics of mass, height, and natural frequency. Experimental observations are focused on the effects of the distance between two structures, type, and peak acceleration of input excitation. A period lengthening is observed in the soil-foundation-structure interaction (SFSI) effects of all structures. It is monitored that an increment in response of smaller structure and a decrement in response of larger structure, compared to isolated structure, due to SSSI effects. Unfavorable distance reveals that the most significant increment in response of S2 structure occurred at approximately one-fourth of wavelength transmitted from the vibrating adjacent structure. More severe SSSI effects are found under a lower input earthquake acceleration. It is found that both height and mass ratios, between two adjacent structures, are particular parameters on SSSI, resulting in increment or reduction of structure response.


Sign in / Sign up

Export Citation Format

Share Document