scholarly journals Llamanade: An open-source computational pipeline for robust nanobody humanization

Structure ◽  
2021 ◽  
Author(s):  
Zhe Sang ◽  
Yufei Xiang ◽  
Ivet Bahar ◽  
Yi Shi
2020 ◽  
pp. 464-471 ◽  
Author(s):  
Lubomir Chorbadjiev ◽  
Jude Kendall ◽  
Joan Alexander ◽  
Viacheslav Zhygulin ◽  
Junyan Song ◽  
...  

PURPOSE Copy-number profiling of multiple individual cells from sparse sequencing may be used to reveal a detailed picture of genomic heterogeneity and clonal organization in a tissue biopsy specimen. We sought to provide a comprehensive computational pipeline for single-cell genomics, to facilitate adoption of this molecular technology for basic and translational research. MATERIALS AND METHODS The pipeline comprises software tools programmed in Python and in R and depends on Bowtie, HISAT2, Matplotlib, and Qt. It is installed and used with Anaconda. RESULTS Here we describe a complete pipeline for sparse single-cell genomic data, encompassing all steps of single-nucleus DNA copy-number profiling, from raw sequence processing to clonal structure analysis and visualization. For the latter, a specialized graphical user interface termed the single-cell genome viewer (SCGV) is provided. With applications to cancer diagnostics in mind, the SCGV allows for zooming and linkage to the University of California at Santa Cruz Genome Browser from each of the multiple integrated views of single-cell copy-number profiles. The latter can be organized by clonal substructure or by any of the associated metadata such as anatomic location and histologic characterization. CONCLUSION The pipeline is available as open-source software for Linux and OS X. Its modular structure, extensive documentation, and ease of deployment using Anaconda facilitate its adoption by researchers and practitioners of single-cell genomics. With open-source availability and Massachusetts Institute of Technology licensing, it provides a basis for additional development by the cancer bioinformatics community.


2021 ◽  
Vol 10 (29) ◽  
Author(s):  
Hatim Almutairi ◽  
Michael D. Urbaniak ◽  
Michelle D. Bates ◽  
Narissara Jariyapan ◽  
Godwin Kwakye-Nuako ◽  
...  

We present the LGAAP computational pipeline, which was successfully used to assemble six genomes of the parasite subfamily Leishmaniinae to chromosome-scale completeness from a combination of long- and short-read sequencing data. LGAAP is open source, and we suggest that it may easily be ported for assembly of any genome of comparable size (∼35 Mb).


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Alejandro Saettone ◽  
Marcelo Ponce ◽  
Syed Nabeel-Shah ◽  
Jeffrey Fillingham

Abstract Background Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-Seq) is a widely-used molecular method to investigate the function of chromatin-related proteins by identifying their associated DNA sequences on a genomic scale. ChIP-Seq generates large quantities of data that is difficult to process and analyze, particularly for organisms with a contig-based sequenced genomes that typically have minimal annotation on their associated set of genes other than their associated coordinates primarily predicted by gene finding programs. Poorly annotated genome sequence makes comprehensive analysis of ChIP-Seq data difficult and as such standardized analysis pipelines are lacking. Results We present a one-stop computational pipeline, “Rapid Analysis of ChIP-Seq data” (RACS), that utilizes traditional High-Performance Computing (HPC) techniques in association with open source tools for processing and analyzing raw ChIP-Seq data. RACS is an open source computational pipeline available from any of the following repositories https://bitbucket.org/mjponce/RACS or https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS. RACS is particularly useful for ChIP-Seq in organisms with contig-based genomes that have poor gene annotation to aid protein function discovery.To test the performance and efficiency of RACS, we analyzed ChIP-Seq data previously published in a model organism Tetrahymena thermophila which has a contig-based genome. We assessed the generality of RACS by analyzing a previously published data set generated using the model organism Oxytricha trifallax, whose genome sequence is also contig-based with poor annotation. Conclusions The RACS computational pipeline presented in this report is an efficient and reliable tool to analyze genome-wide raw ChIP-Seq data generated in model organisms with poorly annotated contig-based genome sequence. Because RACS segregates the found read accumulations between genic and intergenic regions, it is particularly efficient for rapid downstream analyses of proteins involved in gene expression.


Author(s):  
Fadi P. Deek ◽  
James A. M. McHugh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document