On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading

2017 ◽  
Vol 328 ◽  
pp. 292-303 ◽  
Author(s):  
G.H. Majzoobi ◽  
F. Abbasi
2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850032
Author(s):  
F. ABBASI ◽  
G. H. MAJZOOBI

In this study, the effect of contact pressure on fretting fatigue behavior of Al7075-T6 under cyclic normal contact loading is investigated. It is found that fretting fatigue life for the case of cyclic contact load was significantly less than that for constant contact load at the same axial and contact load levels, particularly for High Cycle Fatigue (HCF) conditions. The results showed that the fretting fatigue life decreased monotonically with the increase in normal contact load for all axial stresses. Examination of the fretting scars was performed using optical microscopy and numerical simulation was carried out using commercial finite element (FE) codes ABAQUS[Formula: see text] and FRANC2D/L[Formula: see text] to calculate the crack propagation life. The crack initiation life was calculated by a combination of numerical and experimental results. Finally, the FE simulation was validated by a comparison between the numerical crack growth rate and the experimental measurement using replica.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095717
Author(s):  
F Abbasi ◽  
GH Majzoobi ◽  
J Mendiguren

A damage phenomenon called fretting fatigue frequently takes place when two contact bodies are clamped together under a normal contact load along with a small-scale oscillatory motion due to cyclic loading. In contrast to the constant contact loading, less attention has been paid to variable contact loading which was technically reviewed in this study. Emphasis was placed on the efforts made over the past decade and the future challenges including nonlinear effects of contact loads, friction, frequency, slip amplitude, wear, and contact mechanic are discussed extensively. It was revealed a need for new fatigue and contact mechanics models by identifying the aforementioned missing parameters.


2005 ◽  
Vol 57 (1) ◽  
pp. 1-9 ◽  
Author(s):  
H. Murthy ◽  
Daniel B. Garcia ◽  
John F. Matlik ◽  
Thomas N. Farris

2020 ◽  
Vol 68 (4) ◽  
Author(s):  
Grzegorz Starzynski ◽  
Ryszard Buczkowski ◽  
Bartlomiej Zylinski

AbstractThe aim of the work is to show both the similarities and differences in the formation of deformation-induced roughness in contact compression in the presence of oil and the problem of free surface roughing during uniaxial stretching in a plastic area. The relationships between changes in the roughness are caused by the deformation of the sample and the viscosity of oil at the contact area. It has been shown that normal contact loading with the presence of oil initially leads to an increase in surface roughness, then to its smoothening. The results of the experimental research have been compared with numerical simulation made using FSI (Fluid Structure Interaction) and ABAQUS systems. Using finite element calculations, it was possible to explain the phenomenon of roughness formation on the surface of a smooth steel sample. The changes in the structure of the smooth surface resulting from compression in the presence of oil are caused by the rotation and deformation of surface grains. The roughness of this structure is dependent on the viscosity of oil: the more viscous the liquid is, the rougher texture is formed.


2020 ◽  
Vol 142 ◽  
pp. 106004 ◽  
Author(s):  
Vicente Martín ◽  
Jesús Vázquez ◽  
Carlos Navarro ◽  
Jaime Domínguez

Wear ◽  
2017 ◽  
Vol 372-373 ◽  
pp. 81-90 ◽  
Author(s):  
Qi Yang ◽  
Wenlong Zhou ◽  
Pengtao Gai ◽  
Xinhua Zhang ◽  
Xuesong Fu ◽  
...  

Author(s):  
Kunio Asai ◽  
Takeshi Kudo ◽  
Hideo Yoda

In continuously coupled blade structures, fretting fatigue and wear have to be considered as supposed failure modes at the contact surface of the shroud cover, which is subject to steady contact pressure from centrifugal force and the vibratory load of the blade. We did unique fretting tests that modeled the structure of the shroud cover, where the vibratory load is only carried by the contact friction force, i.e., a type of friction. What was investigated in this study are fretting fatigue strength, wear rate, and friction characteristics, such as friction coefficient and slip-range of 12%-Cr steel blade material. The friction-type tests showed that fretting fatigue strength decreases with the contact pressure and a critical normal contact force exists under which fretting fatigue failure does not occur at any vibratory load. This differs from knowledge obtained through pad-type load carry tests that fretting fatigue strength decreases with the increase of contact pressure and that it almost saturates under a certain contact pressure. Our detailed observation in the friction-type tests clarified that this mechanism was the low contact pressure narrowing the contact area and a resulting high stress concentration at a local area. The fretting wear rate was explained by the dissipated energy rate per cycle obtained from the measured hysteresis loop between the relative slip range and the tangential contact force. This fretting wear rate per cycle is almost the same as the general adhesion wear rate when energy dissipation per cycle is high, and the former is smaller than the latter as the dissipated energy decreases. Finally, to prevent fretting fatigue and wear, we propose an evaluation design chart of the contact surface of the shroud cover based on our friction-type fretting tests.


Sign in / Sign up

Export Citation Format

Share Document