Time series forecast modeling of vulnerabilities in the android operating system using ARIMA and deep learning methods

2021 ◽  
Vol 30 ◽  
pp. 100515
Author(s):  
Kerem Gencer ◽  
Fatih Başçiftçi
2021 ◽  
Vol 264 ◽  
pp. 112600
Author(s):  
Robert N. Masolele ◽  
Veronique De Sy ◽  
Martin Herold ◽  
Diego Marcos Gonzalez ◽  
Jan Verbesselt ◽  
...  

2021 ◽  
Author(s):  
Süleyman UZUN ◽  
Sezgin KAÇAR ◽  
Burak ARICIOĞLU

Abstract In this study, for the first time in the literature, identification of different chaotic systems by classifying graphic images of their time series with deep learning methods is aimed. For this purpose, a data set is generated that consists of the graphic images of time series of the most known three chaotic systems: Lorenz, Chen, and Rossler systems. The time series are obtained for different parameter values, initial conditions, step size and time lengths. After generating the data set, a high-accuracy classification is performed by using transfer learning method. In the study, the most accepted deep learning models of the transfer learning methods are employed. These models are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet and GoogLeNet. As a result of the study, classification accuracy is found between 96% and 97% depending on the problem. Thus, this study makes association of real time random signals with a mathematical system possible.


2020 ◽  
Vol 140 ◽  
pp. 110121 ◽  
Author(s):  
Abdelhafid Zeroual ◽  
Fouzi Harrou ◽  
Abdelkader Dairi ◽  
Ying Sun

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nahla F. Omran ◽  
Sara F. Abd-el Ghany ◽  
Hager Saleh ◽  
Abdelmgeid A. Ali ◽  
Abdu Gumaei ◽  
...  

The novel coronavirus disease (COVID-19) is regarded as one of the most imminent disease outbreaks which threaten public health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are experiencing depression, anxiety, and other strain reactions. The response to prevent and control the new coronavirus pneumonia has reached a crucial point. Therefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the virus outbreak in the course of this troublesome time to have control over its mortality. Recently, deep learning models are playing essential roles in handling time-series data in different applications. This paper presents a comparative study of two deep learning methods to forecast the confirmed cases and death cases of COVID-19. Long short-term memory (LSTM) and gated recurrent unit (GRU) have been applied on time-series data in three countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020 to 6/12/2020. The results show that LSTM has achieved the best performance in confirmed cases in the three countries, and GRU has achieved the best performance in death cases in Egypt and Kuwait.


Author(s):  
Qingyi Pan ◽  
Wenbo Hu ◽  
Ning Chen

It is important yet challenging to perform accurate and interpretable time series forecasting. Though deep learning methods can boost forecasting accuracy, they often sacrifice interpretability. In this paper, we present a new scheme of series saliency to boost both accuracy and interpretability. By extracting series images from sliding windows of the time series, we design series saliency as a mixup strategy with a learnable mask between the series images and their perturbed versions. Series saliency is model agnostic and performs as an adaptive data augmentation method for training deep models. Moreover, by slightly changing the objective, we optimize series saliency to find a mask for interpretable forecasting in both feature and time dimensions. Experimental results on several real datasets demonstrate that series saliency is effective to produce accurate time-series forecasting results as well as generate temporal interpretations.


Author(s):  
Evandro C. Taquary ◽  
Leila G. M. Fonseca ◽  
Raian V. Maretto ◽  
Hugo N. Bendini ◽  
Bruno M. Matosak ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongguo Yang ◽  
Irshad Ahmed Abbasi ◽  
Fahad Algarni ◽  
Sikandar Ali ◽  
Mingzhu Zhang

Nowadays, an Internet of Things (IoT) device consists of algorithms, datasets, and models. Due to good performance of deep learning methods, many devices integrated well-trained models in them. IoT empowers users to communicate and control physical devices to achieve vital information. However, these models are vulnerable to adversarial attacks, which largely bring potential risks to the normal application of deep learning methods. For instance, very little changes even one point in the IoT time-series data could lead to unreliable or wrong decisions. Moreover, these changes could be deliberately generated by following an adversarial attack strategy. We propose a robust IoT data classification model based on an encode-decode joint training model. Furthermore, thermometer encoding is taken as a nonlinear transformation to the original training examples that are used to reconstruct original time series examples through the encode-decode model. The trained ResNet model based on reconstruction examples is more robust to the adversarial attack. Experiments show that the trained model can successfully resist to fast gradient sign method attack to some extent and improve the security of the time series data classification model.


Sign in / Sign up

Export Citation Format

Share Document