A novel physical continuum damage model for the finite element simulation of crack growth mechanism in quasi-brittle geomaterials

Author(s):  
Bin Sun ◽  
Xiaojiang Liu ◽  
Zhao-Dong Xu
2016 ◽  
Vol 2 ◽  
pp. 825-831 ◽  
Author(s):  
Dong-Jun Kim ◽  
Kyung-Dong Bae ◽  
Han-Sang Lee ◽  
Yun-Jae Kim ◽  
Goon-Cherl Park

2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


Bauingenieur ◽  
2015 ◽  
Vol 90 (06) ◽  
pp. 252-264 ◽  
Author(s):  
Dominik Kueres ◽  
Alexander Stark ◽  
Martin Herbrand ◽  
Martin Classen

Die numerische Simulation des Tragverhaltens von Beton- und Stahlbetonkonstruktionen mit nicht-linearen Finite-Elemente-Modellen gewinnt in der konstruktiven Ingenieurpraxis zunehmend an Bedeutung. In kommerziellen Finite-Elemente-Programmen stehen dem Anwender unterschiedliche Möglichkeiten zur Abbildung des Betonverhaltens in Form von plastischen Materialmodellen zur Verfügung. Zur Anwendung dieser Materialmodelle ist dabei in der Regel die Kenntnis des Betontragverhaltens unter einaxialer Druck- und Zugbeanspruchung erforderlich. Im vorliegenden Beitrag werden verschiedene Ansätze zur mathematischen Beschreibung dieser konstitutiven Beziehungen für Normalbeton und ultrahochfesten Beton (UHPC) vorgestellt und im Hinblick auf ihre Anwendbarkeit in plastischen Materialmodellen untersucht. Darauf aufbauend werden numerische Simulationen mit einem plastischen Schädigungsmodell unter Verwendung eines einheitlichen Parametersatzes durchgeführt und mit den Ergebnissen experimenteller Untersuchungen verglichen. Die Untersuchungen umfassen hierbei Materialprüfungen an Normalbeton und UHPC unter verschiedenen ein- und mehraxialen Spannungszuständen. Durch die Wahl geeigneter konstitutiver Beziehungen kann für die untersuchten Spannungszustände eine gute Übereinstimmung zwischen simuliertem und experimentell ermitteltem Betontragverhalten erreicht werden.


Sign in / Sign up

Export Citation Format

Share Document