Effect of reinforcement size and orientation on the thermal expansion behavior of metallic glass reinforced metal matrix composites produced by gas pressure infiltration

2017 ◽  
Vol 654 ◽  
pp. 85-92 ◽  
Author(s):  
Klaudia Lichtenberg ◽  
Kay André Weidenmann
2017 ◽  
Vol 51 (30) ◽  
pp. 4165-4175 ◽  
Author(s):  
Klaudia Lichtenberg ◽  
Eric Orsolani-Uhlig ◽  
Ralf Roessler ◽  
Kay André Weidenmann

The reinforcement of a soft matrix material with hard particles is an established strategy to develop materials with tailored properties. In this regard, using metallic glasses with high crystallization temperatures, e.g. in the system NiNbX (X = Sn, Ta), for composites produced by liquid metal infiltration is a novel approach. The current work deals with the characterization of such metallic glass particle-reinforced AlSi10Mg-based metal matrix composites manufactured by gas pressure infiltration. Processing–structure–property relations were investigated with a special focus on the influence of an additional heat treatment on the metal matrix composite’s properties. Metallographic methods were used to investigate infiltration quality, particle distribution within the composite and the composite’s microstructure. Moreover, X-ray diffraction measurements, elastic analysis using ultrasonic spectroscopy and compression tests were performed to analyze its properties. The X-ray diffraction results indicate that there is no crystallization of the glass during processing. Metallographic investigations show that the flakes are arranged in a layered structure within the composite. The embedding of metallic glass flakes leads to an increase in Young’s modulus and compressive strength in comparison to the unreinforced material. The composite’s strength can be further increased by a heat treatment.


2008 ◽  
Vol 58 (5) ◽  
pp. 401-404 ◽  
Author(s):  
Xian Luo ◽  
Yanqing Yang ◽  
Cuixia Liu ◽  
Ting Xu ◽  
Meini Yuan ◽  
...  

Author(s):  
Fuat Okumus ◽  
Aydin Turgut ◽  
Erol Sancaktar

Abstract In this study, the use of coating layers is investigated to reduce thermal stresses in the metal matrix composites which have a mismatch in coefficients of thermal expansions in fiber and matrix components. The thermoelastic solutions are obtained based on a three-cylinder model. It is shown that the effectiveness of the layer can be defined by the product of its coefficient of thermal expansion and thickness. Consequently, a compensating layer with a sufficiently high coefficient of thermal expansion can reduce the thermal stresses in the metal matrix. The study is based on a concentric three cylinder model isolating individual steel fibers surrounded with a coating layer and an aluminum matrix layer. Only monotonic cooling is studied.


1993 ◽  
Vol 8 (5) ◽  
pp. 1169-1173 ◽  
Author(s):  
William B. Johnson ◽  
B. Sonuparlak

Diamond particles are unique fillers for metal matrix composites because of their extremely high modulus, high thermal conductivity, and low coefficient of thermal expansion. Diamond reinforced aluminum metal matrix composites were prepared using a pressureless metal infiltration process. The diamond particulates are coated with SiC prior to infiltration to prevent the formation of Al4C3, which is a product of the reaction between aluminum and diamond. The measured thermal conductivity of these initial diamond/Al metal matrix composites is as high as 259 W/m-K. The effects of coating thickness on the physical properties of the diamond/Al metal matrix composite, including Young's modulus, 4-point bend strength, coefficient of thermal expansion, and thermal conductivity, are presented.


Sign in / Sign up

Export Citation Format

Share Document