aluminum matrix
Recently Published Documents


TOTAL DOCUMENTS

1960
(FIVE YEARS 619)

H-INDEX

67
(FIVE YEARS 13)

2022 ◽  
Vol 60 (1) ◽  
pp. 83-93
Author(s):  
Young-We Kim ◽  
Yong-Hee Jo ◽  
Yun-Soo Lee ◽  
Hyoung-Wook Kim ◽  
Je-In Lee

The effects of dissolution of the η′ phase by solution treatment on the mechanical properties of A7075-T6 alloy were investigated. Immediately after solution treatment of the T6 sheet at 450 oC or higher, elongation significantly increased and dissolution of the η′ phase occurred. η′ is the main hardening phase. After natural-aging, GPI, which is coherent with the aluminum matrix, was formed and strength increased. When bake hardening after natural-aging was performed, the yield strength slightly increased due to partial dissolution of the GPI and re-precipitation of the η′ phase. In contrast, after solution treatment at 400 oC, there was less elongation increase due to the precipitation of the coarse η phase at grain boundaries and low dissolution of the η′ phase. In addition, when bake hardening after natural-aging was performed, the yield strength decreased due to insufficient GPI, which is the nucleation site of the η′ phase. To promote reprecipitation of the η′ phase, the solution treatment temperature was set to a level that would increase solubility. As a result, the yield strength was significantly increased through re-precipitation of a large number of fine and uniform η′ phase. In addition, to increase the effect of dissolution, a pre-aging treatment was introduced and the bake hardenability can be improved after dissolution.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 358
Author(s):  
Magdalena Niemczewska-Wójcik ◽  
Manickaraj Pethuraj ◽  
Marimuthu Uthayakumar ◽  
Mohd Shukry Abdul Majid

Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the surface topography as well as the working conditions of the interacting parts. Therefore, extensive experiments are being conducted to improve the suitability of engineering materials (including AMC) for different applications. This paper presents research on manufactured aluminum metal matrix composites reinforced with 10 wt.% of Al2SiO5 (aluminum sillimanite). The manufactured and prepared samples were subjected to surface topography measurements and to tribological studies both with and without lubricant using a block-on-ring tester. Based on the results, analyses of the surface topography (i.e., surface roughness parameters, Abbott–Firestone curve, and surface defects) as well as of the tribological characteristics (i.a. friction coefficient, linear wear, and wear intensity) were performed. Differences in the surface topography of the manufactured elements were shown. The surface topography had a significant impact on tribological characteristics of the sliding joints in the tests where lubrication was and was not used. Better tribological characteristics were obtained for the surfaces characterized by greater roughness (determined on the basis of both the profile and surface texture parameters). In the case of tribological tests with lubrication, the friction coefficient as well as the wear intensity was significantly lower compared to tribological tests without lubrication. However, lower values of the friction coefficient and wear intensity were still recorded for the surfaces that were characterized by greater roughness. The obtained results showed that it is important to analyze the surface topography because surface characteristics influence tribological properties.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012034
Author(s):  
Liu Chen ◽  
Zhencheng Li ◽  
Sai Xu ◽  
Aixue Sha

Abstract The influence of graphene on dislocation movement and subsequent mechanical response of aluminum is investigated by the computational method of molecular dynamics simulation. A Lennard–Jones potential describing Al-C interaction was obtained through ab initio calculation. It was observed that the 2D graphene could reinforce Al matrix similar to the traditional Orowan mechanism. The Al/graphene interface first attract the gliding dislocation to reduce the system energy, which is unlike the grain boundary to repel gliding dislocations through pile-up mechanism. With the increase of stress, dislocation attracted and trapped at the front of graphene could glide along the interface and finally bypass it through climbing when graphene is orientated out of the shear plane. In addition, the strengthening ability of graphene is size dependent, showing a linear relationship between strength increment and graphene size.


2022 ◽  
Vol 891 ◽  
pp. 162078
Author(s):  
Dongxin Mao ◽  
Xiangchen Meng ◽  
Yuming Xie ◽  
Yuchen Yang ◽  
Yanli Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document