scholarly journals On the complexity of independent dominating set with obligations in graphs

Author(s):  
Christian Laforest ◽  
Timothée Martinod
2015 ◽  
Vol 562 ◽  
pp. 1-22 ◽  
Author(s):  
Ching-Hao Liu ◽  
Sheung-Hung Poon ◽  
Jin-Yong Lin

Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850024
Author(s):  
Nuttawoot Nupo ◽  
Sayan Panma

Let [Formula: see text] denote the Cayley digraph of the rectangular group [Formula: see text] with respect to the connection set [Formula: see text] in which the rectangular group [Formula: see text] is isomorphic to the direct product of a group, a left zero semigroup, and a right zero semigroup. An independent dominating set of [Formula: see text] is the independent set of elements in [Formula: see text] that can dominate the whole elements. In this paper, we investigate the independent domination number of [Formula: see text] and give more results on Cayley digraphs of left groups and right groups which are specific cases of rectangular groups. Moreover, some results of the path independent domination number of [Formula: see text] are also shown.


Author(s):  
Ararat Harutyunyan ◽  
Paul Horn ◽  
Jacques Verstraete

Abstract Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$ , almost all d-regular n-vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$ , then ${\gamma_\circ}(G) = \frac{n}{2}$ . We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$ . Therefore both the girth and regularity conditions are required for the main result.


2013 ◽  
Vol 161 (4-5) ◽  
pp. 558-572 ◽  
Author(s):  
N. Bourgeois ◽  
F. Della Croce ◽  
B. Escoffier ◽  
V.Th. Paschos

Author(s):  
P. Jeyalakshmi ◽  
K. Karuppasamy ◽  
S. Arockiaraj

Let [Formula: see text] be a signed graph. A dominating set [Formula: see text] is said to be an independent dominating set of [Formula: see text] if [Formula: see text] is a fully negative. In this paper, we initiate a study of this parameter. We also establish the bounds and characterization on the independent domination number of a signed graph.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1155 ◽  
Author(s):  
Yupeng Zhou ◽  
Jinshu Li ◽  
Yang Liu ◽  
Shuai Lv ◽  
Yong Lai ◽  
...  

The minimum weight vertex independent dominating set (MWVIDS) problem is an important version of the minimum independent dominating set. The MWVIDS problem has a number of applications in many fields. However, the MWVIDS problem is known to be NP-hard and thus computationally challenging. In this work, we present the improved memetic algorithm called MSSAS for solving the MWVIDS problem. The proposed MSSAS algorithm combines probability-based dynamic optimization (PDO) (to generate good and diverse offspring solutions by assembling elements of existing good solutions) as well as a local search phase named C_LS (to seek high-quality local optima by combining the idea of constrained-based two-level configuration checking strategy and tabu mechanism). The extensive results on popular DIMACS and BHOLIB benchmarks demonstrate that MSSAS competes favorably with the state-of-the-art algorithms. In addition, we analyze the benefits of the newly raised components including two above proposed ideas with our memetic framework. It is worth mentioning that the combination of both components has excellent effects for the MWVIDS problem.


Sign in / Sign up

Export Citation Format

Share Document