Rupture process of the Wenchuan earthquake (Mw 7.9) from surface ruptures and fault striations characteristics

2014 ◽  
Vol 619-620 ◽  
pp. 13-28 ◽  
Author(s):  
Jiawei Pan ◽  
Haibing Li ◽  
Jialiang Si ◽  
Junling Pei ◽  
Xiaofang Fu ◽  
...  
2013 ◽  
Vol 166 ◽  
pp. 245-254 ◽  
Author(s):  
Yongshuang Zhang ◽  
Jusong Shi ◽  
Ping Sun ◽  
Weimin Yang ◽  
Xin Yao ◽  
...  

2011 ◽  
Vol 05 (04) ◽  
pp. 329-342 ◽  
Author(s):  
YONG LI ◽  
RONGJUN ZHOU ◽  
ALEXANDER L. DENSMORE ◽  
SHUYOU CAO ◽  
YUPING LIU

During the M s 8.0 Wenchuan Earthquake of May 12, 2008, three distinct faults in the Longmen Shan along the eastern margin of the Tibetan Plateau ruptured. We have carried out detailed field geological mapping on these faults (the Yingxiu-Beichuan, the Pengxian-Guanxian, and the Xiaoyudong Faults), as well as the minor Leigu Fault, using GPS and total station surveys. The surface rupture of the Wenchuan Earthquake consists of two margin-parallel thrust faults linked by the Xiaoyudong tear fault. By comparing the features of the surface rupture of the faults, the spatial relationships between the different surface ruptures can be determined. It is clear that the margin-parallel thrust faults are linked at depth, forming an imbricated thrust linked by a tear fault.


Landslides ◽  
2021 ◽  
Author(s):  
Fan Yang ◽  
Xuanmei Fan ◽  
Srikrishnan Siva Subramanian ◽  
Xiangyang Dou ◽  
Junlin Xiong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5191
Author(s):  
Chang Li ◽  
Bangjin Yi ◽  
Peng Gao ◽  
Hui Li ◽  
Jixing Sun ◽  
...  

Landslide inventories could provide fundamental data for analyzing the causative factors and deformation mechanisms of landslide events. Considering that it is still hard to detect landslides automatically from remote sensing images, endeavors have been carried out to explore the potential of DCNNs on landslide detection, and obtained better performance than shallow machine learning methods. However, there is often confusion as to which structure, layer number, and sample size are better for a project. To fill this gap, this study conducted a comparative test on typical models for landside detection in the Wenchuan earthquake area, where about 200,000 secondary landslides were available. Multiple structures and layer numbers, including VGG16, VGG19, ResNet50, ResNet101, DenseNet120, DenseNet201, UNet−, UNet+, and ResUNet were investigated with different sample numbers (100, 1000, and 10,000). Results indicate that VGG models have the highest precision (about 0.9) but the lowest recall (below 0.76); ResNet models display the lowest precision (below 0.86) and a high recall (about 0.85); DenseNet models obtain moderate precision (below 0.88) and recall (about 0.8); while UNet+ also achieves moderate precision (0.8) and recall (0.84). Generally, a larger sample set can lead to better performance for VGG, ResNet, and DenseNet, and deeper layers could improve the detection results for ResNet and DenseNet. This study provides valuable clues for designing models’ type, layers, and sample set, based on tests with a large number of samples.


Sign in / Sign up

Export Citation Format

Share Document