Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection Using WINS

2011 ◽  
Vol 24 (8) ◽  
pp. 71-87 ◽  
Author(s):  
Wei Tian ◽  
Mohammad Shahidehpour ◽  
Zuyi Li
2019 ◽  
Vol 10 (4) ◽  
pp. 1981-1992 ◽  
Author(s):  
Ahmad Nikoobakht ◽  
Jamshid Aghaei ◽  
Taher Niknam ◽  
Miadreza Shafie-khah ◽  
Joao P. S. Catalao

2014 ◽  
Vol 472 ◽  
pp. 219-225
Author(s):  
Hui Ren ◽  
Dan Xia Yang ◽  
David Watts ◽  
Xi Chen

Renewable Energy especially wind energy integration has attained profound growth across the worldwide power system. Wind energy integration at large scale comes up with the challenge on voltages and reactive power management at power system level. The research work presented in this paper has analyzed the impact of wind energy on reactive power reserve with special reference to Hebei Southern Power System. The maximum wind power integration capacity is calculated, and the effect of increasing wind power integration on voltage profiles is studied. Possible controls from system sides and its effects on wind power integration are explored. Study shows that with the increase of the wind power integration capacity, the intermittency and variation will bring more serious problems to the system frequency regulation, reserve service and voltage control. These problems also become the limiting factors for further increase of large-scale wind power integration. In order to make a better use of wind power resources in Heibei province and maintain system safety at the same time, further research should be performed on exploring the reactive and active power regulation and control of the wind farm and the methods to decrease the variability of wind farm outputs.


2005 ◽  
Vol 1 (03) ◽  
pp. 93-98
Author(s):  
V. Rogez ◽  
◽  
H. Roisse ◽  
V. Autier ◽  
X. Guillaud

Author(s):  
Ayyarao S. L. V. Tummala

AbstractThis paper presents a novel composite wide area control of a DFIG wind energy system which combines the Robust Exact Differentiator (RED) and Discontinuous Integral (DI) control to damp out inter-area oscillations. RED generates the real-time differentiation of a relative speed signal in a noisy environment while DI control, an extension to a twisting algorithm and PID control, develops a continuous control signal and hence reduces chattering. The proposed control is robust to disturbances and can enhance the overall stability of the system. The proposed composite sliding mode control is evaluated using a modified benchmark two-area power system model with wind energy integration. Simulation results under various operating scenarios show the efficacy of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document