Inhibition and the right inferior frontal cortex

2004 ◽  
Vol 8 (4) ◽  
pp. 170-177 ◽  
Author(s):  
Adam R. Aron ◽  
Trevor W. Robbins ◽  
Russell A. Poldrack
2018 ◽  
Vol 33 (3) ◽  
pp. 335-346 ◽  
Author(s):  
A Correas ◽  
E López-Caneda ◽  
L Beaton ◽  
S Rodríguez Holguín ◽  
LM García-Moreno ◽  
...  

Background: The prevalence of binge drinking has risen in recent years. It is associated with a range of neurocognitive deficits among adolescents and young emerging adults who are especially vulnerable to alcohol use. Attention is an essential dimension of executive functioning and attentional disturbances may be associated with hazardous drinking. The aim of the study was to examine the oscillatory neural dynamics of attentional control during visual target detection in emerging young adults as a function of binge drinking. Method: In total, 51 first-year university students (18 ± 0.6 years) were assigned to light drinking ( n = 26), and binge drinking ( n = 25) groups based on their alcohol consumption patterns. A high-density magnetoencephalography signal was combined with structural magnetic resonance imaging in an anatomically constrained magnetoencephalography model to estimate event-related source power in a theta (4–7 Hz) frequency band. Phase-locked co-oscillations were further estimated between the principally activated regions during task performance. Results: Overall, the greatest event-related theta power was elicited by targets in the right inferior frontal cortex and it correlated with performance accuracy and selective attention scores. Binge drinkers exhibited lower theta power and dysregulated oscillatory synchrony to targets in the right inferior frontal cortex, which correlated with higher levels of alcohol consumption. Conclusions: These results confirm that a highly interactive network in the right inferior frontal cortex subserves attentional control, revealing the importance of theta oscillations and neural synchrony for attentional capture and contextual maintenance. Attenuation of theta power and synchronous interactions in binge drinkers may indicate early stages of suboptimal integrative processing in young, highly functioning binge drinkers.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


2008 ◽  
Vol 28 (39) ◽  
pp. 9790-9796 ◽  
Author(s):  
B. U. Forstmann ◽  
S. Jahfari ◽  
H. S. Scholte ◽  
U. Wolfensteller ◽  
W. P. M. van den Wildenberg ◽  
...  

2014 ◽  
Vol 18 (4) ◽  
pp. 177-185 ◽  
Author(s):  
Adam R. Aron ◽  
Trevor W. Robbins ◽  
Russell A. Poldrack

2018 ◽  
Vol 30 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Johanna Wagner ◽  
Jan R. Wessel ◽  
Ayda Ghahremani ◽  
Adam R. Aron

Many studies have examined the rapid stopping of action as a proxy of human self-control. Several methods have shown that a critical focus for stopping is the right inferior frontal cortex. Moreover, electrocorticography studies have shown beta band power increases in the right inferior frontal cortex and in the BG for successful versus failed stop trials, before the time of stopping elapses, perhaps underpinning a prefrontal–BG network for inhibitory control. Here, we tested whether the same signature might be visible in scalp electroencephalography (EEG)—which would open important avenues for using this signature in studies of the recruitment and timing of prefrontal inhibitory control. We used independent component analysis and time–frequency approaches to analyze EEG from three different cohorts of healthy young volunteers (48 participants in total) performing versions of the standard stop signal task. We identified a spectral power increase in the band 13–20 Hz that occurs after the stop signal, but before the time of stopping elapses, with a right frontal topography in the EEG. This right frontal beta band increase was significantly larger for successful compared with failed stops in two of the three studies. We also tested the hypothesis that unexpected events recruit the same frontal system for stopping. Indeed, we show that the stopping-related right-lateralized frontal beta signature was also active after unexpected events (and we accordingly provide data and scripts for the method). These results validate a right frontal beta signature in the EEG as a temporally precise and functionally significant neural marker of the response inhibition process.


2018 ◽  
Vol 139 ◽  
pp. 173-177 ◽  
Author(s):  
Martin J. Herrmann ◽  
Bibiane S.E. Simons ◽  
Anna K. Horst ◽  
Stephanie Boehme ◽  
Thomas Straube ◽  
...  

2005 ◽  
Vol 22 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Daniel J. Levitin ◽  
Vinod Menon

The neuroanatomical correlates of temporal structure and expectancies in music were investigated using a unique stimulus manipulation involving scrambled music. The experiment compared brain responses (using functional magnetic resonance imaging) while participants listened to classical music and scrambled versions of that same music. The scrambled versions disrupted musical structure while holding low-level musical attributes constant, including such psychoacoustic parameters as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and additional activation in the right hemisphere homologue of that area. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.


Sign in / Sign up

Export Citation Format

Share Document