scholarly journals Function and Structure of the Right Inferior Frontal Cortex Predict Individual Differences in Response Inhibition: A Model-Based Approach

2008 ◽  
Vol 28 (39) ◽  
pp. 9790-9796 ◽  
Author(s):  
B. U. Forstmann ◽  
S. Jahfari ◽  
H. S. Scholte ◽  
U. Wolfensteller ◽  
W. P. M. van den Wildenberg ◽  
...  
2020 ◽  
Vol 30 (12) ◽  
pp. 6325-6335 ◽  
Author(s):  
Akimitsu Suda ◽  
Takahiro Osada ◽  
Akitoshi Ogawa ◽  
Masaki Tanaka ◽  
Koji Kamagata ◽  
...  

Abstract The right inferior frontal cortex (IFC) is critical to response inhibition. The right IFC referred in the human studies of response inhibition is located in the posterior part of the inferior frontal gyrus and the surrounding regions and consists of multiple areas that implement distinct functions. Recent studies using resting-state functional connectivity have parcellated the cerebral cortex and revealed across-subject variability of parcel-based cerebrocortical networks. However, how the right IFC of individual brains is functionally organized and what functional properties the IFC parcels possess regarding response inhibition remain elusive. In the present functional magnetic resonance imaging study, precision functional mapping of individual human brains was adopted to the parcels in the right IFC to evaluate their functional properties related to response inhibition. The right IFC consisted of six modules or subsets of subregions, and the spatial organization of the modules varied considerably across subjects. Each module revealed unique characteristics of brain activity and its correlation to behavior related to response inhibition. These results provide updated functional features of the IFC and demonstrate the importance of individual-focused approaches in studying response inhibition in the right IFC.


NeuroImage ◽  
2016 ◽  
Vol 140 ◽  
pp. 66-75 ◽  
Author(s):  
Toni Cunillera ◽  
Debora Brignani ◽  
David Cucurell ◽  
Lluís Fuentemilla ◽  
Carlo Miniussi

2018 ◽  
Vol 33 (3) ◽  
pp. 335-346 ◽  
Author(s):  
A Correas ◽  
E López-Caneda ◽  
L Beaton ◽  
S Rodríguez Holguín ◽  
LM García-Moreno ◽  
...  

Background: The prevalence of binge drinking has risen in recent years. It is associated with a range of neurocognitive deficits among adolescents and young emerging adults who are especially vulnerable to alcohol use. Attention is an essential dimension of executive functioning and attentional disturbances may be associated with hazardous drinking. The aim of the study was to examine the oscillatory neural dynamics of attentional control during visual target detection in emerging young adults as a function of binge drinking. Method: In total, 51 first-year university students (18 ± 0.6 years) were assigned to light drinking ( n = 26), and binge drinking ( n = 25) groups based on their alcohol consumption patterns. A high-density magnetoencephalography signal was combined with structural magnetic resonance imaging in an anatomically constrained magnetoencephalography model to estimate event-related source power in a theta (4–7 Hz) frequency band. Phase-locked co-oscillations were further estimated between the principally activated regions during task performance. Results: Overall, the greatest event-related theta power was elicited by targets in the right inferior frontal cortex and it correlated with performance accuracy and selective attention scores. Binge drinkers exhibited lower theta power and dysregulated oscillatory synchrony to targets in the right inferior frontal cortex, which correlated with higher levels of alcohol consumption. Conclusions: These results confirm that a highly interactive network in the right inferior frontal cortex subserves attentional control, revealing the importance of theta oscillations and neural synchrony for attentional capture and contextual maintenance. Attenuation of theta power and synchronous interactions in binge drinkers may indicate early stages of suboptimal integrative processing in young, highly functioning binge drinkers.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


2014 ◽  
Vol 26 (8) ◽  
pp. 1601-1614 ◽  
Author(s):  
Corey N. White ◽  
Eliza Congdon ◽  
Jeanette A. Mumford ◽  
Katherine H. Karlsgodt ◽  
Fred W. Sabb ◽  
...  

The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.


2012 ◽  
Vol 14 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Jennifer D Townsend ◽  
Susan Y Bookheimer ◽  
Lara C Foland-Ross ◽  
Teena D Moody ◽  
Naomi I Eisenberger ◽  
...  

2014 ◽  
Vol 35 (10) ◽  
pp. 5141-5152 ◽  
Author(s):  
Sharon Morein‐Zamir ◽  
Chris Dodds ◽  
Tim J. Hartevelt ◽  
Wolfgang Schwarzkopf ◽  
Barbara Sahakian ◽  
...  

2004 ◽  
Vol 8 (4) ◽  
pp. 170-177 ◽  
Author(s):  
Adam R. Aron ◽  
Trevor W. Robbins ◽  
Russell A. Poldrack

2014 ◽  
Vol 18 (4) ◽  
pp. 177-185 ◽  
Author(s):  
Adam R. Aron ◽  
Trevor W. Robbins ◽  
Russell A. Poldrack

Sign in / Sign up

Export Citation Format

Share Document