scholarly journals Constructing a coarse space with a given Higson or binary corona

2020 ◽  
Vol 284 ◽  
pp. 107366
Author(s):  
Taras Banakh ◽  
Igor Protasov
Keyword(s):  
2020 ◽  
Vol 70 (6) ◽  
pp. 1413-1444
Author(s):  
Elisa Hartmann

AbstractTo a coarse structure we associate a Grothendieck topology which is determined by coarse covers. A coarse map between coarse spaces gives rise to a morphism of Grothendieck topologies. This way we define sheaves and sheaf cohomology on coarse spaces. We obtain that sheaf cohomology is a functor on the coarse category: if two coarse maps are close they induce the same map in cohomology. There is a coarse version of a Mayer-Vietoris sequence and for every inclusion of coarse spaces there is a coarse version of relative cohomology. Cohomology with constant coefficients can be computed using the number of ends of a coarse space.


2021 ◽  
Vol 26 (2) ◽  
pp. 44
Author(s):  
Eric Chung ◽  
Hyea-Hyun Kim ◽  
Ming-Fai Lam ◽  
Lina Zhao

In this paper, we consider the balancing domain decomposition by constraints (BDDC) algorithm with adaptive coarse spaces for a class of stochastic elliptic problems. The key ingredient in the construction of the coarse space is the solutions of local spectral problems, which depend on the coefficient of the PDE. This poses a significant challenge for stochastic coefficients as it is computationally expensive to solve the local spectral problems for every realization of the coefficient. To tackle this computational burden, we propose a machine learning approach. Our method is based on the use of a deep neural network (DNN) to approximate the relation between the stochastic coefficients and the coarse spaces. For the input of the DNN, we apply the Karhunen–Loève expansion and use the first few dominant terms in the expansion. The output of the DNN is the resulting coarse space, which is then applied with the standard adaptive BDDC algorithm. We will present some numerical results with oscillatory and high contrast coefficients to show the efficiency and robustness of the proposed scheme.


Acta Numerica ◽  
2017 ◽  
Vol 26 ◽  
pp. 591-721 ◽  
Author(s):  
Jinchao Xu ◽  
Ludmil Zikatanov

This paper provides an overview of AMG methods for solving large-scale systems of equations, such as those from discretizations of partial differential equations. AMG is often understood as the acronym of ‘algebraic multigrid’, but it can also be understood as ‘abstract multigrid’. Indeed, we demonstrate in this paper how and why an algebraic multigrid method can be better understood at a more abstract level. In the literature, there are many different algebraic multigrid methods that have been developed from different perspectives. In this paper we try to develop a unified framework and theory that can be used to derive and analyse different algebraic multigrid methods in a coherent manner. Given a smoother$R$for a matrix$A$, such as Gauss–Seidel or Jacobi, we prove that the optimal coarse space of dimension$n_{c}$is the span of the eigenvectors corresponding to the first$n_{c}$eigenvectors$\bar{R}A$(with$\bar{R}=R+R^{T}-R^{T}AR$). We also prove that this optimal coarse space can be obtained via a constrained trace-minimization problem for a matrix associated with$\bar{R}A$, and demonstrate that coarse spaces of most existing AMG methods can be viewed as approximate solutions of this trace-minimization problem. Furthermore, we provide a general approach to the construction of quasi-optimal coarse spaces, and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG and spectral AMGe.


2019 ◽  
Vol 20 (1) ◽  
pp. 297
Author(s):  
Igor Protasov

<p>A ballean (or coarse space) is a set endowed with a coarse structure. A ballean X is called normal if any two asymptotically disjoint subsets of X are asymptotically separated.  We say that a ballean X is ultra-normal (extremely normal) if any two unbounded subsets of X are not asymptotically disjoint (every unbounded subset of X is large).   Every maximal ballean is extremely normal and every extremely normal ballean is ultranormal, but the converse statements do not hold.   A normal ballean is ultranormal if and only if the Higson′s corona of X is a singleton.   A discrete ballean X is ultranormal if and only if X is maximal.  We construct a series of concrete balleans with extremal properties.</p>


Sign in / Sign up

Export Citation Format

Share Document