Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation

Toxicology ◽  
2009 ◽  
Vol 265 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
Bárbara S. Rocha ◽  
Bruno Gago ◽  
Rui M. Barbosa ◽  
João Laranjinha
2004 ◽  
Vol 286 (3) ◽  
pp. H1043-H1056 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Mahendra Kavdia ◽  
Aleksander S. Popel

Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca2+ oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca2+ oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.


2008 ◽  
Vol 179 (4S) ◽  
pp. 337-337
Author(s):  
Hani S Ertemi ◽  
David HW Lau ◽  
Faiz H Mumtaz ◽  
Dimitri P Mikhailidis ◽  
Cecil S Thompson

2020 ◽  
Vol 15 (11) ◽  
pp. 2958-2965
Author(s):  
Naoya Ieda ◽  
Yuji Hotta ◽  
Ayaka Yamauchi ◽  
Atsushi Nishikawa ◽  
Takahiro Sasamori ◽  
...  

2010 ◽  
Vol 86 (3) ◽  
pp. 496-505 ◽  
Author(s):  
Matthias Desch ◽  
Katja Sigl ◽  
Bernhard Hieke ◽  
Katharina Salb ◽  
Frieder Kees ◽  
...  

Reproduction ◽  
2021 ◽  
Vol 161 (1) ◽  
pp. 31-41
Author(s):  
Deepak S Hiremath ◽  
Fernanda B M Priviero ◽  
R Clinton Webb ◽  
CheMyong Ko ◽  
Prema Narayan

Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.


1999 ◽  
pp. 220 ◽  
Author(s):  
Masood Khan ◽  
Cecil Thompson ◽  
Faiz Mumtaz ◽  
Dimitri Mikhailidis ◽  
Robert Morgan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document