activating mutations
Recently Published Documents


TOTAL DOCUMENTS

1206
(FIVE YEARS 323)

H-INDEX

106
(FIVE YEARS 11)

2022 ◽  
Vol 11 ◽  
Author(s):  
Hongfei Si ◽  
Jie Wang ◽  
Rui He ◽  
Xiuwen Yu ◽  
Shan Li ◽  
...  

Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%–10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.


Blood ◽  
2022 ◽  
Author(s):  
HeeJin Cheon ◽  
Jeffrey C Xing ◽  
Katharine B Moosic ◽  
Johnson Ung ◽  
Vivian Chan ◽  
...  

Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative disorders whose molecular landscape is incompletely defined. We leveraged paired whole exome and transcriptome sequencing in the largest LGL leukemia cohort to date, which included 105 patients (93 TCRab T-LGL and 12 TCRγδ T-LGL). 76 mutations were observed in three or more patients in the cohort, and out of those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59, DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as recurrently mutated putative drivers using an unbiased driver analysis approach leveraging our whole exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected, whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2 were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and epigenetic modifying genes, especially KMT2D and SETD1B (p < 0.01, p < 0.05 respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3 mutation was associated with lower ANC values, and N647I mutation was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3 coiled-coil domain were characterized. STAT3 mutant patients exhibited increased mutational burden and enrichment of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene expression analysis revealed enrichment of interferon gamma signaling and decreased PI3K-Akt signaling for STAT3 mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.


Author(s):  
Jeremy H Raymond ◽  
Zackie Aktary ◽  
Lionel Larue ◽  
Véronique Delmas

G protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G proteins, which induce cellular signaling through various pathways. Such signaling modulates essential cellular processes of melanomagenesis, such as proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden treatment options in melanoma in the future.


2022 ◽  
Author(s):  
Frank Hidalgo ◽  
Laura M Nocka ◽  
Neel H Shah ◽  
Kent Gorday ◽  
Naomi R Latorraca ◽  
...  

Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H?Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H?Ras in mammalian Ba/F3 cells correlate well with results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase?activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g., at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen?deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with the destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras – and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.


2022 ◽  
Vol 23 (1) ◽  
pp. 507
Author(s):  
Hikari Watanabe ◽  
Chika Yoshida ◽  
Masafumi Hidaka ◽  
Tomohisa Ogawa ◽  
Taisuke Tomita ◽  
...  

Amyloid beta peptides (Aβs) are generated from amyloid precursor protein (APP) through multiple cleavage steps mediated by γ-secretase, including endoproteolysis and carboxypeptidase-like trimming. The generation of neurotoxic Aβ42/43 species is enhanced by familial Alzheimer’s disease (FAD) mutations within the catalytic subunit of γ-secretase, presenilin 1 (PS1). FAD mutations of PS1 cause partial loss-of-function and decrease the cleavage activity. Activating mutations, which have the opposite effect of FAD mutations, are important for studying Aβ production. Aph1 is a regulatory subunit of γ-secretase; it is presumed to function as a scaffold of the complex. In this study, we identified Aph1 mutations that are active in the absence of nicastrin (NCT) using a yeast γ-secretase assay. We analyzed these Aph1 mutations in the presence of NCT; we found that the L30F/T164A mutation is activating. When introduced in mouse embryonic fibroblasts, the mutation enhanced cleavage. The Aph1 mutants produced more short and long Aβs than did the wild-type Aph1, without an apparent modulatory function. The mutants did not change the amount of γ-secretase complex, suggesting that L30F/T164A enhances catalytic activity. Our results provide insights into the regulatory function of Aph1 in γ-secretase activity.


2021 ◽  
Vol 14 (12) ◽  
pp. 1300
Author(s):  
Ioannis A. Vathiotis ◽  
Andriani Charpidou ◽  
Niki Gavrielatou ◽  
Konstantinos N. Syrigos

While human epidermal growth factor receptor 2 (HER2) aberrations have long been described in patients with non-small cell lung cancer (NSCLC), they have only recently been effectively targeted. Unlike patients with breast cancer, NSCLC patients can harbor either HER2-activating mutations or HER2 amplification coupled with protein overexpression. The latter has also been the case for patients with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). As preclinical data continue to accumulate, clinical trials evaluating novel agents that target HER2 have produced promising preliminary results. Here, we review existing data on HER2 aberrations in NSCLC. Starting from HER2 biology in normal and disease processes, we summarize discrepancies in HER2 diagnostic assays between breast cancer and NSCLC. Finally, to dissect the therapeutic implications of HER2-activating mutations versus gene amplification and/or protein overexpression, we present data from prospective clinical trials that have employed distinct classes of agents to target HER2 in patients with NSCLC.


2021 ◽  
Vol 22 (24) ◽  
pp. 13357
Author(s):  
Francesca Fanini ◽  
Erika Bandini ◽  
Meropi Plousiou ◽  
Silvia Carloni ◽  
Petra Wise ◽  
...  

Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. Methods: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. Results: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16–erlotinib regimen is more effective than the selumetinib–erlotinib combination in KRAS-mutated NSCLC. Conclusions: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Albert J. Brougham ◽  
Jeffrey Solzak ◽  
Milan Radovich

Background/Objective: Antibody drug conjugates (ADCs) deliver potent cytotoxic therapy in a highly targeted manner by binding cancer-specific cell surface antigens. HER2 is a receptor tyrosine kinase that is commonly amplified in breast and gastric cancers, but more recently has been shown to harbor gain-of-function activating mutations in several cancer types. Recent observations have suggested that HER2-ADCs may be viable therapies for patients that harbor these activating mutations. This research retrospectively explores the efficacy of HER2-ADCs in metastatic cancer patients in a real-world setting. Methods: Patient information was gathered from the Precision Genomics program at IU Health, narrowed for specific mutation criteria (HER2 pathogenic mutation), cross referenced with OncoKB to legitimize oncogenicity, and selected for patients prescribed HER2-ADCs. For these patients, pre-treatment and mid-treatment CT-scans were analyzed following RECIST protocols. The primary outcomes were overall response rate (ORR), clinical benefit rate (CBR), and progression free survival (PFS). Secondary outcomes were to tabulate the frequency and clinical characteristics of HER2-mutated tumors. Results: Out of 517 patients with somatic HER2 mutations, 60 patients had a pathogenic HER2 mutation. Of these 60 patients, the most common tumor types were 26.67% Breast and 11.67% Bladder/Urothelial. 11 of 60 patients were prescribed a HER2-ADC (Trastuzumab Emtansine = 10, Trastuzumab Deruxtecan = 1). 8 of 11 patients were evaluable for response with RECIST criteria with 1 patient having a partial response, 4 patients having stable disease and 3 patients having progressive disease. ORR=13%, CBR=63%, Median PFS = 2.77 months (95% CI: 2.15-3.39 months). Conclusion/Implications: To our knowledge, this is the first report of HER2-ADCs demonstrating clinical activity in HER2-mutated cancers across tumor types. Further clinical trials are ongoing that will validate these initial findings. 


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6195
Author(s):  
Dominic Lapadula ◽  
Jeffrey L. Benovic

Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36–50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.


Leukemia ◽  
2021 ◽  
Author(s):  
Jorn L. J. C. Assmann ◽  
Leticia G. Leon ◽  
Christiaan J. Stavast ◽  
Sanne E. van den Bogaerdt ◽  
Joyce Schilperoord-Vermeulen ◽  
...  

AbstractT-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.


Sign in / Sign up

Export Citation Format

Share Document