scholarly journals Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks

2014 ◽  
Vol 48 ◽  
pp. 47-65 ◽  
Author(s):  
Berk Anbaroglu ◽  
Benjamin Heydecker ◽  
Tao Cheng
Author(s):  
B. Anbaroglu ◽  
B. Heydecker ◽  
T. Cheng

Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London’s urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.


2015 ◽  
Vol 11 (9) ◽  
pp. 754-771 ◽  
Author(s):  
Berk Anbaroğlu ◽  
Tao Cheng ◽  
Benjamin Heydecker

Author(s):  
B. Anbaroglu ◽  
B. Heydecker ◽  
T. Cheng

Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London’s urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.


2021 ◽  
Vol 10 (4) ◽  
pp. 248
Author(s):  
Nicolas Tempelmeier ◽  
Udo Feuerhake ◽  
Oskar Wage ◽  
Elena Demidova

The discovery of spatio-temporal dependencies within urban road networks that cause Recurrent Congestion (RC) patterns is crucial for numerous real-world applications, including urban planning and the scheduling of public transportation services. While most existing studies investigate temporal patterns of RC phenomena, the influence of the road network topology on RC is often overlooked. This article proposes the ST-Discovery algorithm, a novel unsupervised spatio-temporal data mining algorithm that facilitates effective data-driven discovery of RC dependencies induced by the road network topology using real-world traffic data. We factor out regularly reoccurring traffic phenomena, such as rush hours, mainly induced by the daytime, by modelling and systematically exploiting temporal traffic load outliers. We present an algorithm that first constructs connected subgraphs of the road network based on the traffic speed outliers. Second, the algorithm identifies pairs of subgraphs that indicate spatio-temporal correlations in their traffic load behaviour to identify topological dependencies within the road network. Finally, we rank the identified subgraph pairs based on the dependency score determined by our algorithm. Our experimental results demonstrate that ST-Discovery can effectively reveal topological dependencies in urban road networks.


10.29007/cxkb ◽  
2019 ◽  
Author(s):  
Ei Ei Mon ◽  
Hideya Ochiai ◽  
Chaiyachet Saivichit ◽  
Chaodit Aswakul

Traffic congestion on not only highways but also complex urban road networks has attracted the attention of many researchers. Traffic congestion growing in urban road net- works is an inevitably important problem especially for populated cities during rush hours. A traffic blockage can be realized as the source of traffic congestion, which can propagate to form queues and sometimes a gridlock. Traffic blockages are triggered by complicated factors ranging from temporal and spatial situations. Recurrent congestion is a traffic congestion that occurs during morning and evening rush hours e.g. from school buses and parent vehicles to drive their children to-and-from schools. In addition, unforeseen, unexpected events that can cause as non-recurrent traffic congestion e.g. car breakdowns, accidents, road maintenance, and severe weather conditions, which can disorder normal traffic flows and reduce road capacity. Traffic blockage may spread its negative impacts to neighbouring upstream and downstream links. And that can lead to the formation of congestion gridlock, which further reduce traffic flow efficiency in a complex urban road network. These problems are vital but often tough to resolve in urban road networks. In this paper, the Chula-Sathorn SUMO Simulator (Chula-SSS) dataset has been used with Simulation of Urban Mobility (SUMO) to simulate recurrent and non-recurrent congestion cases. The detection is based on the information from simulated lane area detectors. For non-recurrent case, lanes are closed to simulate the gridlock occurrences. With the morning case of calibrated Chula-SSS dataset, both recurrent and nonrecurrent congestion based gridlock have been studied with upstream and downstream nearby detectors and preliminary results are herein reported upon the gridlock status as detected by using different combinations of traffic jam length and mean speed conditions at both the upstream and downstream detectors of every intersection within the critical looped road segments.


Sign in / Sign up

Export Citation Format

Share Document