Generation mechanism of friction anisotropy by surface texturing under boundary lubrication

2020 ◽  
Vol 149 ◽  
pp. 105598 ◽  
Author(s):  
Shota Ito ◽  
Kenta Takahashi ◽  
Shinya Sasaki
Friction ◽  
2021 ◽  
Author(s):  
Chia-Jui Hsu ◽  
Andreas Stratmann ◽  
Simon Medina ◽  
Georg Jacobs ◽  
Frank Mücklich ◽  
...  

AbstractLaser surface texturing (LST) has been proven to improve the tribological performance of machine elements. The micro-scale patterns manufactured by LST may act as lubricant reservoirs, thus supplying oil when encountering insufficient lubrication. However, not many studies have investigated the use of LST in the boundary lubrication regime, likely due to concerns of higher contact stresses that can occur with the increasing surface roughness. This study aims to examine the influence of LST on the fatigue lifetime of thrust rolling bearings under boundary lubrication. A series of periodic patterns were produced on the thrust rolling bearings, using two geometrically different designs, namely cross and dimple patterns. Base oil ISO VG 100 mixed with 0.05 wt% P of zinc dialkyldithiophosphate (ZDDP) was supplied. The bearings with cross patterns reduce the wear loss by two orders of magnitude. The patterns not only retain lubricant in the textured pockets but also enhance the formation of an anti-wear tribofilm. The tribofilm generation may be improved by the higher contact stresses that occur when using the textured surface. Therefore, in contrast to the negative concerns, the ball bearings with cross patterns were instead found to increase the fatigue life by a factor of three.


Author(s):  
Leonardo Conde Dias ◽  
Henara Costa ◽  
gabriel bacca ferri
Keyword(s):  

Wear ◽  
2018 ◽  
Vol 404-405 ◽  
pp. 62-70 ◽  
Author(s):  
Inna Popov ◽  
Alexey Moshkovich ◽  
Sidney R. Cohen ◽  
Vladislav Perfilyev ◽  
Atzmon Vakahy ◽  
...  
Keyword(s):  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Jettanan Homchanthanakul ◽  
Florentin Wörgötter ◽  
Stanislav N. Gorb ◽  
...  

AbstractLegged locomotion of robots can be greatly improved by bioinspired tribological structures and by applying the principles of computational morphology to achieve fast and energy-efficient walking. In a previous research, we mounted shark skin on the belly of a hexapod robot to show that the passive anisotropic friction properties of this structure enhance locomotion efficiency, resulting in a stronger grip on varying walking surfaces. This study builds upon these results by using a previously investigated sawtooth structure as a model surface on a legged robot to systematically examine the influences of different material and surface properties on the resulting friction coefficients and the walking behavior of the robot. By employing different surfaces and by varying the stiffness and orientation of the anisotropic structures, we conclude that with having prior knowledge about the walking environment in combination with the tribological properties of these structures, we can greatly improve the robot’s locomotion efficiency.


Sign in / Sign up

Export Citation Format

Share Document