scholarly journals Getting grip in changing environments: the effect of friction anisotropy inversion on robot locomotion

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Jettanan Homchanthanakul ◽  
Florentin Wörgötter ◽  
Stanislav N. Gorb ◽  
...  

AbstractLegged locomotion of robots can be greatly improved by bioinspired tribological structures and by applying the principles of computational morphology to achieve fast and energy-efficient walking. In a previous research, we mounted shark skin on the belly of a hexapod robot to show that the passive anisotropic friction properties of this structure enhance locomotion efficiency, resulting in a stronger grip on varying walking surfaces. This study builds upon these results by using a previously investigated sawtooth structure as a model surface on a legged robot to systematically examine the influences of different material and surface properties on the resulting friction coefficients and the walking behavior of the robot. By employing different surfaces and by varying the stiffness and orientation of the anisotropic structures, we conclude that with having prior knowledge about the walking environment in combination with the tribological properties of these structures, we can greatly improve the robot’s locomotion efficiency.

2021 ◽  
Vol 13 (16) ◽  
pp. 8728
Author(s):  
Byoung-Suk Kweon ◽  
Jody Rosenblatt-Naderi ◽  
Christopher D. Ellis ◽  
Woo-Hwa Shin ◽  
Blair H. Danies

We investigated the effects of pedestrian environments on parents’ walking behavior, their perception of pedestrian safety, and their willingness to let their children walk to school. This study was a simulated walking environment experiment that created six different pedestrian conditions using sidewalks, landscape buffers, and street trees. We used within subjects design where participants were exposed to all six simulated conditions. Participants were 26 parents with elementary school children. Sidewalks, buffer strips, and street trees affected parents’ decisions to: walk themselves; let their children walk to school; evaluate their perception whether the simulated environment was safe for walking. We found that the design of pedestrian environments does affect people’s perceptions of pedestrian safety and their willingness to walk. The presence of a sidewalk, buffer strip, and street trees affected parents’ decision to walk, their willingness to let their children walk to school and perceived the pedestrian environment as safer for walking. The effects of trees on parents’ walking and perception of pedestrian safety are greater when there is a wide buffer rather than a narrow buffer. It was found that parents are more cautious about their children’s walking environments and safety than their own.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Xiong ◽  
Pingfu Yao ◽  
Xuedong Guo ◽  
Chenglong Chu ◽  
Wuhong Wang

To study the impact of traffic sign on pedestrian walking behavior, the paper applies cellular automaton to simulate one-way pedestrian flow. The channel is defined as a rectangle with one open entrance and two exits of equal width. Traffic sign showing that exit is placed with some distance in the middle front of the two exits. In the simulation, walking environment is set with various input density, width of exit, width and length of the channel, and distance of the traffic sign to exit. Simulation results indicate that there exists a critical distance from the traffic sign to exit for a given channel layout. At the critical distance, pedestrian flow fluctuates. Below such critical distance, flow is getting larger with the increase of input density. However, the flow drops sharply when the input density is over a critical level. If the distance is a little bit further than the critical distance, the largest flow occurs and the flow can remain steady no matter what input density will be.


2020 ◽  
Author(s):  
Md Masum Billah ◽  
Abdul Malik Mohd Ali ◽  
Zulkhairi Mohd Yusof ◽  
Kushsairy Kadir ◽  
Kanendra Naidu Vijyakumar

2020 ◽  
Vol 5 (49) ◽  
pp. eabb2174
Author(s):  
Chuanyu Yang ◽  
Kai Yuan ◽  
Qiuguo Zhu ◽  
Wanming Yu ◽  
Zhibin Li

Achieving versatile robot locomotion requires motor skills that can adapt to previously unseen situations. We propose a multi-expert learning architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialized by a distinct set of pretrained experts, each in a separate deep neural network (DNN). Then, by learning the combination of these DNNs using a gating neural network (GNN), MELA can acquire more specialized experts and transitional skills across various locomotion modes. During runtime, MELA constantly blends multiple DNNs and dynamically synthesizes a new DNN to produce adaptive behaviors in response to changing situations. This approach leverages the advantages of trained expert skills and the fast online synthesis of adaptive policies to generate responsive motor skills during the changing tasks. Using one unified MELA framework, we demonstrated successful multiskill locomotion on a real quadruped robot that performed coherent trotting, steering, and fall recovery autonomously and showed the merit of multi-expert learning generating behaviors that can adapt to unseen scenarios.


1992 ◽  
Vol 4 (3) ◽  
pp. 356-365 ◽  
Author(s):  
Randall D. Beer ◽  
Hillel J. Chiel ◽  
Roger D. Quinn ◽  
Kenneth S. Espenschied ◽  
Patrik Larsson

We present fully distributed neural network architecture for controlling the locomotion of a hexapod robot. The design of this network is directly based on work on the neuroethology of insect locomotion. Previously, we demonstrated in simulation that this controller could generate a continuous range of statically stable insect-like gaits as the activity of a single command neuron was varied and that it was robust to a variety of lesions. We now report that the controller can be utilized to direct the locomotion of an actual six-legged robot, and that it exhibits a range of gaits and degree of robustness in the real world that is quite similar to that observed in simulation.


1993 ◽  
Vol 1 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Kenneth S. Espenschied ◽  
Hillel J. Chiel ◽  
Roger D. Quinn ◽  
Randall D. Beer

Robotica ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 19-39 ◽  
Author(s):  
Manuel F. Silva ◽  
J. A. Tenreiro Machado

SUMMARYThis paper studies the mechanical configuration and the periodic gaits of multi-legged locomotion systems based on its kinematic and dynamic models. The purpose is to determine the system performance during walking, and the best set of locomotion variables that minimize a set of optimization indices. In this perspective, two kinematic and four dynamic indices are formulated to quantitatively measure the performance of the walking robot. The kinematic indices consist of the perturbation analysis and the locomobility measure, and the dynamic performance indices of the walking robot locomotion are the mean absolute density of energy, the mean power density dispersion, the density of power lost and the mean force at the body-legs interface. A set of model-based simulation experiments reveals the system configuration and the type of movements that lead to a better performance, for a specific locomotion mode, from the viewpoint of the proposed indices.


Sign in / Sign up

Export Citation Format

Share Document