ultrahigh molecular weight polyethylene
Recently Published Documents


TOTAL DOCUMENTS

912
(FIVE YEARS 169)

H-INDEX

51
(FIVE YEARS 6)

Polymer ◽  
2021 ◽  
pp. 124420
Author(s):  
Mathias K. Huss-Hansen ◽  
Erik G. Hedlund ◽  
Anton Davydok ◽  
Marie Hansteen ◽  
Gert de Cremer ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6065
Author(s):  
Wangxi Fan ◽  
Xiuqin Fu ◽  
Zefang Li ◽  
Junfei Ou ◽  
Zhou Yang ◽  
...  

Ultrahigh molecular weight polyethylene (UHMWPE) materials have been prevalent joint replacement materials for more than 45 years because of their excellent biocompatibility and wear resistance. In this study, functionalized activated nanocarbon (FANC) was prepared by grafting maleic anhydride polyethylene onto acid-treated activated nanocarbon. A novel porous UHMWPE composite was prepared by incorporating the appropriate amount of FANC and pore-forming agents during the hot-pressing process for medical UHMWPE powder. The experimental results showed that the best prepared porous UHMWPE/FANC exhibited appropriate tensile strength, porosity, and excellent hydrophilicity, with a contact angle of 65.9°. In vitro experiments showed that the porous UHMWPE/FANC had excellent biocompatibility, which is due to its porous structure and hydrophilicity caused by FANC. This study demonstrates the potential viability for our porous UHMWPE/FANC to be used as cartilage replacement material for biomedical applications.


Author(s):  
Fareha Asim ◽  
Salma Farooq ◽  
Sheraz Hussain Siddique ◽  
Saira Faisal

Ultra high molecular weight fibre cannot be dyed using conventional dyeing techniques as they are extremely hydrophobic and do not possess any polar groups. Wet etching of the surface was used as the pre-treatment process to improve the dyeability of the Ultrahigh Molecular Weight Polyethylene (UHMWPE) knitted fabric using potassium dichromate and sulphuric acid as etchants. The surface modified fabric was dyed at 130°C using High Temperature (HT) dyeing technique with disperse dye and evaluated in terms of Color Strength (K/S), washing fastness, rubbing fastness, and tenacity. It has been observed that wet etching improved the colour strength substantially with an overall good fastness to washing and rubbing but the tenacity decreased with an increase in etching time.


Sign in / Sign up

Export Citation Format

Share Document