scholarly journals A model for hierarchical anisotropic friction, adhesion and wear

2020 ◽  
Vol 152 ◽  
pp. 106549
Author(s):  
Alice Berardo ◽  
Nicola M. Pugno
Keyword(s):  
2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Jettanan Homchanthanakul ◽  
Florentin Wörgötter ◽  
Stanislav N. Gorb ◽  
...  

AbstractLegged locomotion of robots can be greatly improved by bioinspired tribological structures and by applying the principles of computational morphology to achieve fast and energy-efficient walking. In a previous research, we mounted shark skin on the belly of a hexapod robot to show that the passive anisotropic friction properties of this structure enhance locomotion efficiency, resulting in a stronger grip on varying walking surfaces. This study builds upon these results by using a previously investigated sawtooth structure as a model surface on a legged robot to systematically examine the influences of different material and surface properties on the resulting friction coefficients and the walking behavior of the robot. By employing different surfaces and by varying the stiffness and orientation of the anisotropic structures, we conclude that with having prior knowledge about the walking environment in combination with the tribological properties of these structures, we can greatly improve the robot’s locomotion efficiency.


Soft Matter ◽  
2015 ◽  
Vol 11 (24) ◽  
pp. 4962-4972 ◽  
Author(s):  
Mingge Deng ◽  
Leopold Grinberg ◽  
Bruce Caswell ◽  
George Em Karniadakis

We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method.


2021 ◽  
Vol 118 (8) ◽  
pp. e2013801118
Author(s):  
Amit Nagarkar ◽  
Won-Kyu Lee ◽  
Daniel J. Preston ◽  
Markus P. Nemitz ◽  
Nan-Nan Deng ◽  
...  

Locomotion of an organism interacting with an environment is the consequence of a symmetry-breaking action in space-time. Here we show a minimal instantiation of this principle using a thin circular sheet, actuated symmetrically by a pneumatic source, using pressure to change shape nonlinearly via a spontaneous buckling instability. This leads to a polarized, bilaterally symmetric cone that can walk on land and swim in water. In either mode of locomotion, the emergence of shape asymmetry in the sheet leads to an asymmetric interaction with the environment that generates movement––via anisotropic friction on land, and via directed inertial forces in water. Scaling laws for the speed of the sheet of the actuator as a function of its size, shape, and the frequency of actuation are consistent with our observations. The presence of easily controllable reversible modes of buckling deformation further allows for a change in the direction of locomotion in open arenas and the ability to squeeze through confined environments––both of which we demonstrate using simple experiments. Our simple approach of harnessing elastic instabilities in soft structures to drive locomotion enables the design of novel shape-changing robots and other bioinspired machines at multiple scales.


Author(s):  
Lingda Meng ◽  
Rongjie Kang ◽  
Dongming Gan ◽  
Guimin Chen ◽  
Jian S. Dai

Abstract Shape memory alloys (SMA) can generate displacement and force via phase change and have been widely used as actuators in robotics due to their light weight and ease of control. This paper proposes a SMA-driven crawling robot which activates antagonistic SMA springs alternately through a mechanical on-off logic switching system. By introducing a cam based bistable mechanism, elastic energy is stored and released to regulate the reciprocating motion of a slider in the robot. Meanwhile, the robot feet with anisotropic friction surface are employed to convert the reciprocating motion of the slider to unidirectional locomotion of the robot. The static model of the SMA and control logic of the robot are analyzed and validated through experiments.


Author(s):  
Keno DreBel ◽  
Kenny Erleben ◽  
Paul Kry ◽  
Sheldon Andrews
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document