On periodic motions of a body with an internal moving mass on a rough horizontal plane in the case of anisotropic friction

2021 ◽  
Vol 1959 (1) ◽  
pp. 012005
Author(s):  
Boris S Bardin ◽  
Alexey A Rachkov
2021 ◽  
Vol 17 (4) ◽  
pp. 429-436
Author(s):  
A. P. Ivanov ◽  

A simple model of a capsule robot is studied. The device moves upon a rough horizontal plane and consists of a capsule with an embedded motor and an internal moving mass. The motor generates a harmonic force acting on the bodies. Capsule propulsion is achieved by collisions of the inner body with the right wall of the shell. There is Coulomb friction between the capsule and the support, it prevents a possibility of reversal motion. A periodic motion is constructed such that the robot gains the maximal average velocity.


Robotica ◽  
2018 ◽  
Vol 36 (9) ◽  
pp. 1402-1420 ◽  
Author(s):  
Xiong Zhan ◽  
Jian Xu ◽  
Hongbin Fang

SUMMARYThis paper reports the design, analysis, and control of a miniature vibration-driven planar locomotion robot called Shell. A vibration-driven system is able to achieve locomotion based on internal oscillations and anisotropic friction forces. In this robot design, two parallel oscillators are employed to provide propelling forces, and a blade-like support is designed to generate anisotropic frictional contact with the ground. If the two parallel oscillators are of different frequencies and amplitudes, two-dimensional locomotion of the robot can be achieved. To predict the robot's planar locomotion, a dynamic model is developed. Controlling the robot's locomotion and especially, the locomotion modes can be achieved by adjusting the vibration frequencies of the two internal oscillators. Experimental results show that Shell can be controlled to move rectilinearly and along circles with certain curvatures. In addition, by combining these basic trajectories, Shell can move freely on a horizontal plane.


1995 ◽  
Vol 32 (1) ◽  
pp. 50-58
Author(s):  
Hirotaka TANAKA ◽  
Kenji HACHISUKA ◽  
Yoshinori IMAMURA ◽  
Hajime OGATA ◽  
Jinro INOUE

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 2225-2227
Author(s):  
D. C. D. Oguamanam ◽  
J. S. Hansen ◽  
G. R. Heppler
Keyword(s):  

2020 ◽  
pp. 3-14
Author(s):  
O. M. Samoylenko ◽  
O. V. Adamenko ◽  
B. P. Kukareka

Reference method for simultaneous calibration of the three and more measurement standards for vertical angle measurement is developed. This method can to use for obtaining the systematic biases of the vertical angles measurements for each of the measuring standards relative of the horizontal plain was averaged from measurement results in time their calibration or comparison. For realization of the reference method was developed the autocollimationel electronic measurement standard for the automatization measurement of the vertical angles SeaLineZero_Standard™ (SLZ_S™). Summary standard deviation (k=1) of the vertical angle measurement relative the horizontal plane, from the results of their calibration by reference method, is not more 0,07ʺ…0,15ʺ. This result was obtained without the use the systematic biases, for each measurement standards, as measurements corrections (with opposite sign). The measuring standards, that were developed and researched, are necessary for obtaining the systematic biases of the vertical angle measurement for total stations and theodolites, that have the normed standard error 0,5ʺ and 1ʺ, when these instruments are calibrating.


Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


2011 ◽  
Vol 14 (AEROSPACE SCIENCES) ◽  
pp. 1-13
Author(s):  
Rabab Mohamed ◽  
A. El-Butch ◽  
M. Ghobrial ◽  
E. Elhalawany

Sign in / Sign up

Export Citation Format

Share Document