scholarly journals Thermodynamic assessment of chemical looping combustion and solar thermal methane cracking-based integrated system for green ammonia production

2020 ◽  
Vol 19 ◽  
pp. 100588 ◽  
Author(s):  
Muhammad Usman Sajid ◽  
Yusuf Bicer
Author(s):  
Hui Hong ◽  
Tao Han ◽  
Hongguang Jin

A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the Energy-Utilization Diagram (EUD). Solar thermal energy, at approximately 150°C–300°C, is utilized to drive the reduction of Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature (TIT) of 1400°C, and the net solar-to-electric efficiency would be expected to be more than 30%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Hui Hong ◽  
Tao Han ◽  
Hongguang Jin

A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the energy-utilization diagram (EUD). Solar thermal energy, at approximately 150°C–300°C, is utilized to drive the reduction in Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature of 1400°C, and the net solar-to-electric efficiency would be expected to be 22.3%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.


2006 ◽  
Vol 128 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Baiqian Liu

In this paper we propose a novel CO2-recovering hybrid solar-fossil combined cycle with the integration of methane-fueled chemical-looping combustion, and investigate the system with the aid of the Energy-Utilization Diagram (EUD). Chemical-looping combustion (CLC) consists of two successive reactions: first, methane fuel is oxidized by metal oxide(NiO)as an oxygen carrier (reduction of metal oxide); and second, the reduced metal (Ni) is successively oxidized by combustion air (the oxidation of metal). The oxidation of methane with NiO requires a relative low-grade thermal energy at 300°C-500°C. Then concentrated solar thermal energy at approximately 450°C-550°C can be utilized to provide the process heat for this reaction. By coupling solar thermal energy with methane-fueled chemical-looping combustion, the energy level of solar thermal energy at around 450°C-550°C can be upgraded to the chemical energy of solid fuel Ni for better utilization of solar energy to generate electricity. The synergistic integration of solar thermal energy and chemical-looping combustion could make the exergy efficiency and the net solar-to-electric efficiency of the solar hybrid system more than 60% and 30%, respectively, at a turbine inlet temperature (TIT) of 1200°C. At the same time, this new system has an extremely important advantage of directly suppressing the environmental impact due to lack of energy penalty for CO2 recovery. Approximately 9–15 percentage points higher efficiency can be achieved compared to the conventional natural gas-fired combined cycle with CO2 separation. The results obtained here are promising and indicate that this novel solar hybrid combined cycle offers the new possibility of CO2 mitigation using both green energy and fossil fuels. These results also provide a new approach for highly efficient use of solar thermal energy to generate electricity.


Author(s):  
Hui Hong ◽  
Ying Pan ◽  
Xiaosong Zhang ◽  
Tao Han ◽  
Shuo Peng ◽  
...  

In this paper, a new solar hybrid gas turbine cycle integrating ethanol-fueled chemical-looping combustion (CLC) has been proposed, and the system was investigated with the aid of the Energy-Utilization Diagram (EUD). Chemical-looping combustion consists of two successive reactions: first, ethanol fuel is oxidized by metal oxide (NiO) as an oxygen carrier (reduction of metal oxide); secondly, the reduced metal (Ni) is successively oxidized by combustion air (the oxidation of metal). The reduction of NiO with ethanol requires a relative low-grade thermal energy at 150–200°C. Then concentrated solar thermal energy at approximately 200–300°C can be utilized to provide the process heat for this reaction. The integration of solar thermal energy and CLC could make the exergy efficiency and the net solar-to-electric efficiency of the system more than 54% and 28% at a turbine inlet temperature (TIT) of 1288°C, respectively. At the same time, the variation in the overall thermal efficiency (η) of the system with varying key parameters was analyzed, such as Turbine Inlet Temperature, pressure ratio (π) and the temperature of reduction reactor. Additionally, preliminary experiments on ethanol-fueled chemical-looping combustion are carried out to verify the feasibility of the key process. The promising results obtained here indicate that this novel gas turbine cycle with ethanol-fueled chemical-looping combustion could provide a promising approach of both efficient use of alternative fuel and low-temperature solar thermal and offer a technical probability of combining the chemical-looping combustion with inherent CO2 capture for the alternative fuel.


Sign in / Sign up

Export Citation Format

Share Document