Volume 3: Controls, Diagnostics and Instrumentation; Education; Electric Power; Microturbines and Small Turbomachinery; Solar Brayton and Rankine Cycle
Latest Publications


TOTAL DOCUMENTS

106
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791854631

Author(s):  
Yuan Liu ◽  
Manuj Dhingra ◽  
J. V. R. Prasad

This paper presents a method for estimating compressor stall margin and the results of applying the estimation technique to an axial compressor rig. Stall margin estimation is accomplished through the use of a compressor stability detection parameter called the “correlation measure.” The correlation measure captures the periodicity of the pressure in the rotor tip region of the compressor. The downcrossing frequency of the correlation measure across some preset threshold is measured while operating the compressor rig at various steady-state points along the design speed characteristic line. These measurements are used to generate a relationship with stall margin as a function of downcrossing frequency. The estimation technique is evaluated by applying it while dynamically ramping the operating point of the compressor up the design speed line towards surge. A brief investigation on the effects of inlet distortions on the correlation measure-based estimation system is also given.


Author(s):  
Cedric Y. Justin ◽  
Simon I. Briceno ◽  
Dimitri N. Mavris ◽  
Frederic Villeneuve

Heavy duty gas turbine developments are major endeavors which use significant resource for development. Optimization of the technology portfolio is critical to yield a competitive product-line which is robust enough to compete in a dynamic market where vantage positions bring large profits but quickly erode over time. The current research addresses some of these challenges by proposing a transparent and integrated method aimed at investigating technology portfolio selection for future gas turbine-based power plants. The value-driven methodology analyzes technology investments, and is the foundation for a strategic decision framework that facilitates the formulation of robust and competitive technology portfolio solutions. A three-step process is proposed in this paper. A market response analysis is first carried out to estimate market penetration. A technology impact and readiness level analysis is performed next and augmented with a portfolio optimization. Finally, “what-if” scenarios are investigated to assess the robustness of selected technology portfolio candidates against a set of market conditions.


Author(s):  
Donald L. Simon ◽  
Jeffrey B. Armstrong ◽  
Sanjay Garg

An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specifically addresses the underdetermined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.


Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa

In the Ecuadorian electrical market, several sugar plants, which significantly participate in the local electricity market, are producing their own energy and commercializing the surplus to the electrical market. This study evaluates the integral use of the sugar cane bagasse for productive process on a Cogeneration Power Plant in an Ecuadorian Sugar Company [8]. The electrical generation based on biomass requires a great initial investment. The cost is around US$ 800/kW installed, twice the US$ 400/kW initial investment of conventional thermoelectric power plant and almost equal to the US$ 1,000/kW initial cost of hydroelectric power plant [5]. A thermoeconomic study was carried out on the production of electricity and the sales of the surplus of 27 MWe average produced by the power plant. An operational analysis was made using instantaneous values from the estimated curves of demand and generation of electricity. From the results, it was concluded that the generated electricity costs are 0.0443 US$/kWh, while the costs of the electricity from Fossil Power Plants (burning fuel oil, diesel fuel and natural gas) are in the range 0.03–0.15 US$/kWh and from Hydroelectric Plants are about 0.02 US$/kWh. Cogeneration power plants burning sugar cane bagasse could contribute to the mitigation of climatic change. This specific case study shows the reduction of the prospective emissions of greenhouse gases, around 55,188 ton of CO2 equivalent yearly for this cogeneration power plant.


Author(s):  
Mel Maalouf ◽  
Thomas Eldridge

The size and complexity of gas turbines has evolved tremendously over the years and the controls, instrumentation and diagnostics tools have kept pace with the advances. This paper discusses the progress of the tools to keep these complex machines running for continued reliability, efficiency, emissions compliance and power output. The technology to enable the user to manage their machinery on site and remotely will be discussed in this paper along with the benefits added by the technologies.


Author(s):  
Bruce D. Hockaday

Detection of airfoil time of arrival with optical probes has been evolving since the 1980s. Time of arrival data are used to infer airfoil stresses caused by vibration through a sequence of manipulations. The data conversion begins by converting arrival time to blade position, so blade deflection can be determined from the expected non-vibrating position. Various methods are used in the industry to convert deflection data to frequency, amplitude, and stress, which is beyond the scope of this paper. Regardless of the analytical approach used, producing accurate stress information relies on the precise detection and measurement of time of arrival, which equates to blade position. Recent improvements have been made in time of arrival system accuracy by running faster clocks to increase temporal resolution of the measurement. Greater timing resolution, afforded by clock speed, will have diminishing returns when probe and blade-tip interactions begin producing dominant errors. In the case of optical probes, the blade-tip needs to be treated as a curved reflector in the optical system that is capable of introducing dynamic errors. In engine operation the blade-tip moves axially under the probe from untwist, static deflection, and vibration, causing the light to reflect from different parts of the blade-tip. This relative movement between the probe and blade-tip cause the arrival time to change dynamically. Neglecting the dynamic arrival errors caused by the blade-tip’s optical properties will result in blade deflection-errors that propagate into the stress information. This paper presents a laboratory study that quantifies time of arrival errors due to optical interaction with tip radii. The study reports measured arrival position error as a function of location and optical signal power levels. The work is presented in terms of arrival position, producing information that is independent of rotational speed, and vibratory mode.


Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Huaizhi Li ◽  
Zhenping Feng

The aerodynamic performance, structural strength and wheel weight are three important factors in the design process of the radial turbine. This paper presents an investigation on these aspects and develops an optimization design approach for radial turbine with consideration of the three factors. The aerodynamic design for the turbine wheel with inlet diameter of 230mm for 100kW-class microturbine unit is carried out firstly as the original design. Then, the cylinder parabolic geometrical design method is applied to the wheel modeling and structural design, but the maximum stress predicted by Finite Element Analysis greatly exceeds the yield limit of material. Furthermore, the wheel weight is above 7.2kg thus bringing some critical difficulties for bearing design and turbine operation. Therefore, an integrated optimization design method for radial turbine is studied and developed in this paper with focus on the wheel design. Meridional profiles and shape lines of turbine wheel are optimized with consideration of the whole wheel weight. Main structural modeling parameters are reselected to reduce the wheel weight. Trade-off between aerodynamic performance and strength performance is highly emphasized during the optimization design. The results show that the optimized turbine wheel gets high aerodynamic performance and acceptable stress distribution with the weight less than 3.8kg.


Author(s):  
Eisaku Ito ◽  
Ikuo Okada ◽  
Keizo Tsukagoshi ◽  
Junichiro Masada

Global warming is being “prevented” by reducing power plant CO2 emissions. We are contributing to the overall solution by improving the gas turbine thermal efficiency for gas turbine combined cycle (GTCC). Mitsubishi Heavy Industries, Ltd. (MHI) is a participant in a national project aimed at developing 1700°C gas turbine technology. As part of this national project, selected component technologies are investigated in detail. Some technologies which have been verified through component tests have been applied to the design of the newly developed 1600°C J-type gas turbine.


Author(s):  
S. Can Gu¨len ◽  
Joseph John

A combined cycle power plant (or any power plant, for that matter) does very rarely — if ever — run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions and other considerations of interest to the owner of the plant and the existing ambient conditions, a CC plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the “off-design” performance. This is the common method adopted in the fulfillment of commercial transactions. These curves, however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second law based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance.


Sign in / Sign up

Export Citation Format

Share Document