Investigation on Combustion Characteristics and Emissions of Biogas/Hydrogen Blends in Gas Turbine Combustors

Author(s):  
Sabrina Benaissa ◽  
Belkacem Adouane ◽  
S.M. Ali ◽  
Sherif S. Rashwan ◽  
Z. Aouachria
2019 ◽  
Vol 35 (4) ◽  
pp. 839-849 ◽  
Author(s):  
Bernhard Semlitsch ◽  
Tom Hynes ◽  
Ivan Langella ◽  
Nedunchezhian Swaminathan ◽  
Ann P. Dowling

Author(s):  
Hitoshi Fujiwara ◽  
Keiichi Okai ◽  
Mitsumasa Makida ◽  
Kazuo Shimodaira ◽  
Takuya Mizuno ◽  
...  

Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


Sign in / Sign up

Export Citation Format

Share Document