scholarly journals Degradation of Mg-doped zinc oxide buffer layers in thin film CdTe solar cells

2019 ◽  
Vol 691 ◽  
pp. 137556 ◽  
Author(s):  
Francesco Bittau ◽  
Shridhar Jagdale ◽  
Christos Potamialis ◽  
Jake W. Bowers ◽  
John M. Walls ◽  
...  
2021 ◽  
Vol 95 (3) ◽  
pp. 30201
Author(s):  
Xi Guan ◽  
Yufei Wang ◽  
Shang Feng ◽  
Jidong Zhang ◽  
Qingqing Yang ◽  
...  

Organic solar cells (OSCs) have been fabricated using cathode buffer layers based on bathocuproine (BCP) and 4,4'-N,N'-dicarbazole-biphenyl (CBP). It is found that despite nearly same power conversion efficiencies, the bilayer of BCP/CBP shows increased thermal stability of device than the monolayer of BCP, mostly because upper CBP thin film stabilizes under BCP thin film. The mixed layer of BCP:CBP gives slightly decreased efficiency than BCP and BCP/CBP, mostly because the electron mobility of the OSC using BCP:CBP is decreased than those using BCP and BCP/CBP. However, the BCP:CBP increases thermal stability of device than BCP and BCP/CBP, ascribed to that the BCP and CBP effectively inhibit reciprocal tendencies of crystallizations in the mixed layer. Moreover, the BCP:CBP improves the light stability of device than the BCP and BCP/CBP, because the energy transfer from BCP to CBP in in the mixed layer effectively decelerates the photodegradation of BCP. We provide a facial method to improve the stabilities of cathode buffer layers against heat and light, beneficial to the commercial development of OSCs.


Sign in / Sign up

Export Citation Format

Share Document