cell stability
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 70)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 254 ◽  
pp. 115222
Author(s):  
Brent B. Skabelund ◽  
Hisashi Nakamura ◽  
Takuya Tezuka ◽  
Kaoru Maruta ◽  
Jeongmin Ahn ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Oliver Brylski ◽  
Puja Shrestha ◽  
Patricia Gnutt ◽  
David Gnutt ◽  
Jonathan Wolf Mueller ◽  
...  

The energy currency of the cell ATP, is used by kinases to drive key cellular processes. However, the connection of cellular ATP abundance and protein stability is still under investigation. Using Fast Relaxation Imaging paired with alanine scanning and ATP depletion experiments, we study the nucleotide kinase (APSK) domain of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) synthase, a marginally stable protein. Here, we show that the in-cell stability of the APSK is determined by ligand binding and directly connected to cellular ATP levels. The observed protein stability change for different ligand-bound states or under ATP-depleted conditions ranges from ΔGf0 = -10.7 to +13.8 kJ/mol, which is remarkable since it exceeds changes measured previously, for example upon osmotic pressure, cellular stress or differentiation. The results have implications for protein stability during the catalytic cycle of APS kinase and suggest that the cellular ATP level functions as a global regulator of kinase activity.


Author(s):  
Dongxu Ouyang ◽  
Jingwen Weng ◽  
Mingyi Chen ◽  
Jian Wang

Abstract The present work carries out a series of thermal runaway experiments to explore the impact of charging and charging rate on the thermal runaway behaviors of lithium-ion cells, in which five charging rates (0C, 0.5C, 1C, 2C and 4C) and three initial states of charge (SOC), i.e. 25%, 50% and 75% are included. The thermal runaway process of 18650 lithium-ion cells induced by over-heating usually consists of seven stages, and is accompanied with high-temperature, fire and toxicity risks. The internal morphology of cells and the micro features of cell materials are seriously damaged after thermal runaway. Charging aggravates the thermal runaway behavior of cells, which is further exhibited as the earlier occurrence of safety vent opening, gas releasing and thermal runaway. Moreover, the severity deteriorates as the charging rate increases (the larger the charging rate, the earlier and more severe the thermal runway), which may be ascribed to the growth of cell SOC and the decline of cell stability under charging. This phenomenon is especially apparent for the cell with a high initial SOC where a more dramatic-rising α (the advancement ratio of critical times for thermal runaway due to charging) is observed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abdullah ◽  
Sahar Faraji ◽  
Parviz Heidari ◽  
Péter Poczai

The benzyl alcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase, and deacetylvindoline 4-O-acetyltransferase (BAHD) enzymes play a critical role in regulating plant metabolites and affecting cell stability. In the present study, members of the BAHD gene family were recognized in the genome of Theobroma cacao and characterized using various bioinformatics tools. We found 27 non-redundant putative tcBAHD genes in cacao for the first time. Our findings indicate that tcBAHD genes are diverse based on sequence structure, physiochemical properties, and function. When analyzed with BAHDs of Gossypium raimondii and Corchorus capsularis clustered into four main groups. According to phylogenetic analysis, BAHD genes probably evolved drastically after their divergence. The divergence time of duplication events with purifying selection pressure was predicted to range from 1.82 to 15.50 MYA. Pocket analysis revealed that serine amino acid is more common in the binding site than other residuals, reflecting its key role in regulating the activity of tcBAHDs. Furthermore, cis-acting elements related to the responsiveness of stress and hormone, particularly ABA and MeJA, were frequently observed in the promoter region of tcBAHD genes. RNA-seq analysis further illustrated that tcBAHD13 and tcBAHD26 are involved in response to Phytophthora megakarya fungi. In conclusion, it is likely that evolutionary processes, such as duplication events, have caused high diversity in the structure and function of tcBAHD genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Liu ◽  
Chao Wang ◽  
Chenglong Zhao ◽  
Eveline van der Maas ◽  
Kui Lin ◽  
...  

AbstractA key challenge for solid-state-batteries development is to design electrode-electrolyte interfaces that combine (electro)chemical and mechanical stability with facile Li-ion transport. However, while the solid-electrolyte/electrode interfacial area should be maximized to facilitate the transport of high electrical currents on the one hand, on the other hand, this area should be minimized to reduce the parasitic interfacial reactions and promote the overall cell stability. To improve these aspects simultaneously, we report the use of an interfacial inorganic coating and the study of its impact on the local Li-ion transport over the grain boundaries. Via exchange-NMR measurements, we quantify the equilibrium between the various phases present at the interface between an S-based positive electrode and an inorganic solid-electrolyte. We also demonstrate the beneficial effect of the LiI coating on the all-solid-state cell performances, which leads to efficient sulfur activation and prevention of solid-electrolyte decomposition. Finally, we report 200 cycles with a stable capacity of around 600 mAh g−1 at 0.264 mA cm−2 for a full lab-scale cell comprising of LiI-coated Li2S-based cathode, Li-In alloy anode and Li6PS5Cl solid electrolyte.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aikaterini Hatzioannou ◽  
Athina Boumpas ◽  
Miranta Papadopoulou ◽  
Iosif Papafragkos ◽  
Athina Varveri ◽  
...  

Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.


Sign in / Sign up

Export Citation Format

Share Document