The role of surface characteristics in directing subsurface spatial planning processes: The case study of a high-speed railway in Slovenia

2007 ◽  
Vol 22 (4) ◽  
pp. 414-432 ◽  
Author(s):  
Špela Uršej ◽  
Branko Kontić
2020 ◽  
Vol 131 ◽  
pp. 105336 ◽  
Author(s):  
Yinan Jiao ◽  
Yifan Zhang ◽  
Shiqing Ma ◽  
Deli Sang ◽  
Yang Zhang ◽  
...  

Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


2020 ◽  
Vol 9 (7) ◽  
pp. 449
Author(s):  
Massimiliano Pepe ◽  
Domenica Costantino ◽  
Vincenzo Saverio Alfio ◽  
Maria Giuseppa Angelini ◽  
Alfredo Restuccia Garofalo

The aim of this article is to provide a dedicated approach to the realisation of a CityGML model for the valorisation and the conservation of existing cultural heritage. In particular, for the ancient city of Taranto (Italy), several levels of details (LODs) have been built. CityGML models in LOD1 for the most representative periods were realised, which were characterised by urban changes from the mid-1800s until today. To achieve this aim, great importance was devoted to the process of integration of the different file formats. A geographic information system (GIS) approach has been put in place for the construction of the CityGML model in LOD1. In addition, the study also focused on the realisation of a CityGML model in LOD3 of a bridge of a particular historical and architectural interest, called “Ponte di Porta Napoli”, also situated in the city of Taranto. In the latter case, the CityGML model was realised starting from the geomatics survey. Therefore, the project structured in this way represents an important tool for the sharing of (georeferenced) territorial information. The CityGML models represent a valid support for spatial planning processes and measures for the protection, monitoring and conservation of urban elements.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Guo ◽  
Leishan Zhou ◽  
Yixiang Yue ◽  
Jinjin Tang

Methods for solving the carrying capacity problem for High-Speed Railways (HSRs) have received increasing attention in the literature in the last few years. As important nodes in the High-Speed Railway (HSR) network, large stations are usually the carrying capacity bottlenecks of the entire network due to the presence of multiple connections in different directions and the complexity of train operations at these stations. This paper focuses on solving the station carrying capacity problem and considers train set utilization constraints, which are important influencing factors that have rarely been studied by previous researchers. An integer linear programming model is built, and the CPLEX v12.2 software is used to solve the model. The proposed approach is tested on a real-world case study of the Beijing South Railway Station (BS), which is one of the busiest and most complex stations in China. Studies of the impacts of different train set utilization constraints on the practical station carrying capacity are carried out, and some suggestions are then presented for enhancing the practical carrying capacity. Contrast tests indicate that both the efficiency of the solving process and the quality of the solution show huge breakthroughs compared with the heuristic approach.


2021 ◽  
pp. 101128
Author(s):  
Mengjie Jin ◽  
Wenming Shi ◽  
Yu Liu ◽  
Xiaoling Xu ◽  
Kevin X. Li

2012 ◽  
Vol 253-255 ◽  
pp. 1235-1240
Author(s):  
Hua Li ◽  
Bao Ming Han ◽  
Fang Lu ◽  
Xiao Juan Li

Train-set circulation problem is an important issue in operations of high-speed passenger trains in the world. On the basis of characteristics of the train-set circulation problem in China, an integer programming model is presented without considering distinct train-set types. With redefinitions of some basic mathematical objects and operations, an improved particle swarm optimization algorithm is proposed to solve the model. The algorithm is applied in a real-life case study based on the timetable of the Wuhan-Guangzhou High-speed Railway Line. The results show that the proposed algorithm is effective to find the optimized train-set circulation plan.


Sign in / Sign up

Export Citation Format

Share Document