heating energy demand
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 25)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 153 ◽  
pp. 111764
Author(s):  
Chuyin Tian ◽  
Guohe Huang ◽  
Joseph M. Piwowar ◽  
Shin-Cheng Yeh ◽  
Chen Lu ◽  
...  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012148
Author(s):  
Kate Simpson ◽  
Peter Childs ◽  
Jennifer Whyte

Abstract The aim of this research is to quantify the impact of heating set point on space heating energy demand for a typical UK dwelling. Retrofit includes fabric energy efficiency improvements. Energy performance certificates (EPCs) inform the householder of typical savings per measure, but this has previously been found to inaccurately estimate space heating energy demand, leading to errors in 'typical savings' presented to householders. The most sensitive inputs have been found to be temperature set point, followed by fabric efficiency. The BREDEM methodology assumes a temperature of 21°C for nine hours a day, rather than ~16°C and ~20°C found in research. The methods used to inform this study are local sensitivity analysis of the domestic energy model, based on a typical dwelling example with calibrated inputs. This is done using an open calibrated Python model, based on BREDEM. The impact of heating patterns on space heating energy demand are modelled pre retrofit; according to differing heating set points, following wall and loft fabric upgrade and full fabric upgrade. The BREDEM heating set point assumptions lead to space heating energy demand predicted ~50-100 kWh/m2/yr higher than real heating set points. Implications for retrofit design and EPCs are discussed.


Author(s):  
Mikel Lumbreras ◽  
Koldobika Martin-Escudero ◽  
Gonzalo Diarce ◽  
Roberto Garay-Martinez ◽  
Ruben Mulero

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating degree-day (HDD), the cooling degree-day (CDD) and the HDD+CDD were computed from an ensemble of 7 high-resolution bias-corrected simulations attained from EURO-CORDEX under RCP4.5 and RCP8.5. These three indicators were analyzed for 1971-2000 (from E-OBS) and 2011-2040 and 2041-2070, under both RCPs. Results show that the overall spatial distribution of HDD trends for the 3 time-periods points out an increase of energy demand to heat internal environments in Portugal's northern-eastern regions, most significant under RCP8.5. It is projected an increase of CDD values for both scenarios; however, statistically significant linear trends were only found for 2041-2070 under RCP4.5. The need for cooling is almost negligible for the remaining periods, though linear trend values are still considerably higher for 2041-2070 under RCP8.5. By the end of 2070, higher amplitudes for all indicators are depicted for southern Algarve and Alentejo regions, mainly under RCP8.5. For 2041-2070 the Centre and Alentejo (North and Centre) regions present major positive differences for HDD(CDD) under RCP4.5(RCP8.5), within the 5 NUTS II regions predicting higher heating(cooling) requirements for some locations.


2021 ◽  
Vol 13 (3) ◽  
pp. 1199
Author(s):  
Camilo Bravo-Orlandini ◽  
José M. Gómez-Soberón ◽  
Claudia Valderrama-Ulloa ◽  
Francisco Sanhueza-Durán

The energy consumption of buildings accounts for 22% of total global energy use and 13% of global greenhouse gas emissions. In this context, this study aims to evaluate the energy, economic, and environmental performance of housing in Chile built according to the Passivhaus (PH) standard. The standard was applied to housing in eight representative climate zones with a single-family residence as reference. The analysis incorporated passive strategies, which are considered as pillars of the PH. The energy performance was analyzed using the Passive House Planning Package software (PHPP), version 9.6a. The results showed that when every passive strategy is implemented, the heating energy demand decreases by 93%, while the refrigeration demand is nonexistent. These results were achieved through a 37% increase in the overall initial budget investment, which will be amortized over an 11-year period. In this way, the primary energy consumption is reduced by 32% and, correspondingly, CO2 emissions are reduced by 39%. In modern Chile, it is difficult (but not impossible) to incorporate PH. However, governmental programs and aids could represent an initial step. Therefore, this research will help to identify strategies for incorporating PH in Chile, with the aim of improving the energy performance of housing.


2021 ◽  
pp. 237-248
Author(s):  
Amin Mansour-Saatloo ◽  
Arash Moradzadeh ◽  
Sahar Zakeri ◽  
Behnam Mohammadi-Ivatloo

Sign in / Sign up

Export Citation Format

Share Document