Notch-based speed trajectory optimisation for high-speed railway automatic train operation

Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.

Author(s):  
Yinggui Zhang ◽  
Zengru Chen ◽  
Min An ◽  
Aliyu Mani Umar

Train delay is a serious issue that can spread rapidly in the railway network leading to further delay of other trains and detention of passengers in stations. However, the current practice in the event of the trail delay usually depends on train dispatcher’s experience, which cannot manage train operation effectively and may have safety risks. The application of intelligent railway monitor and control system can improve train operation management while increasing railway safety. This paper presents a methodology in which train timetabling, platforming and routing models are combined by studying the real-time adjustment and optimization of high-speed railway in the case of the train delay in order to produce a cooperative adjustment algorithm so that the train operation adjustment plan can be obtained. MATLAB computer programs have been developed based on the proposed methodology and adjustment criteria have been established from knowledge data bases in order to calculate optimized solutions. A case study is used to demonstrate the proposed methodology. The results show that the proposed method can quickly adjust the train operation plan in the case of the train delay, restore the normal train operation order, and reduce the impact of train delay on railway network effectively and efficiently.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 503
Author(s):  
Zicong Meng ◽  
Tao Tang ◽  
Guodong Wei ◽  
Lei Yuan

With the gradual maturity of the automatic train operation (ATO) system in subways, its application scope has also expanded to the high-speed railway field. Considering that the ATO system is still in the early stages of operation, it will take time to fully mature, and definite specifications of the requirements for system operation have not yet been formed. This paper presents the operational design domain (ODD) of the high-speed railway ATO system and proposes a scenario analysis method based on the operational design domain to obtain the input conditions of the system requirements. The article models and verifies the scenario of the linkage control of the door and platform door based on the UPPAAL tools and extracts the input and expected output of the system requirements of the vehicle ATO system. Combined with the input conditions of the system requirements, the system requirements of the vehicle ATO in this scenario are finally obtained, which provides a reference for future functional specification generation and test case generation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mo Gao ◽  
Leishan Zhou ◽  
Yongjun Chen

It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.


2013 ◽  
Vol 706-708 ◽  
pp. 1314-1318
Author(s):  
Hong Mei Shi ◽  
Zu Jun Yu

With the rapid development of high-speed railway, dynamic interaction between vehicles and track is correspondingly strengthened. Therefore, dynamic responses analysis of the high-speed vehicles and track become more and more important to the train operation safety, riding comfort as well as the maintenance of railway infrastructure. In this paper, vehicle and track vibration equations are separately established based on the vehicle track vertical coupling model. Taking the CRH vehicle running on the existing line as an example, the random vibration responses of the vehicle and track under different running speed are analyzed in time domain through numerical integral method and MATLAB program. According to the results, the velocity of train has more influence on the vibration property of rail and wheelsets than bogie and carbody.


Author(s):  
Cheng Zhang ◽  
Min Liu ◽  
Ping Wan ◽  
Junhua Guo

High-speed railway is an indispensable part of the transportation system. The construction and opening of high-speed railway will contribute to the economic development of cities along the route, but it will also have an adverse impact on peripheral areas. The research of the article is mainly carried out from an empirical point of view, using comparative analysis, regression analysis and other methods to measure and quantitatively describe the impact of high-speed railways on urban and regional spatial development. The study found that the operation of the Shanghai-Kunming high-speed rail had a siphon effect on cities along the Jiangxi Province, leading to unbalanced regional development.


Author(s):  
Peijuan Xu ◽  
Francesco Corman ◽  
Qiyuan Peng ◽  
Xiaojie Luan

Research focused on the real-time rescheduling of high-speed railway traffic with a quasi-moving blocking system and transition process affected by the entrance delays and disruptions determining speed limitation. A mixed-integer linear program model related to a job shop model of operations is formulated to reduce the final delay (tardiness) of trains, where three objective functions combine different manners related to traffic control and speed management. The dynamic interaction between train speed and distance headway is considered in the model. Through experiments on a real-world high-speed line in China, the solution quality of the model is assessed by the delay distribution of trains or the smooth degree of train speed profile. The model manages to optimize traffic in the transition from a disordered condition (when disruptions appear) to a normal condition (after disruptions) for real-time operations. In conclusion, there are two and three transition phases for the cases without and with entrance delays, respectively, seen by analyzing the deviation between the rescheduled and planned timetables.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingming Wang ◽  
Li Wang ◽  
Xinyue Xu ◽  
Yong Qin ◽  
Lingqiao Qin

In this study, a mixed integer programming model is proposed to address timetable rescheduling problem under primary delays. The model considers timetable rescheduling strategies such as retiming, reordering, and adjusting stop pattern. A genetic algorithm-based particle swarm optimization algorithm is developed where position vector and genetic evolution operators are reconstructed based on departure and arrival time of each train at stations. Finally, a numerical experiment of Beijing-Shanghai high-speed railway corridor is implemented to test the proposed model and algorithm. The results show that the objective value of proposed method is decreased by 15.6%, 48.8%, and 25.7% compared with the first-come-first-service strategy, the first-schedule-first-service strategy, and the particle swarm optimization, respectively. The gap between the best solution obtained by the proposed method and the optimum solution computed by CPLEX solver is around 19.6%. All delay cases are addressed within acceptable time (within 1.5 min). Moreover, the case study gives insight into the correlation between delay propagation and headway. The primary delays occur in high-density period (scheduled headway closes to the minimum headway), which results in a great delay propagation.


Sign in / Sign up

Export Citation Format

Share Document