Vibration response law of existing buildings affected by subway tunnel boring machine excavation

2022 ◽  
Vol 120 ◽  
pp. 104318
Author(s):  
Ke Wu ◽  
Yang Zheng ◽  
Shuchen Li ◽  
Jie Sun ◽  
Yucong Han ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongbing Mei ◽  
Yimin Xia ◽  
Laikuang Lin ◽  
Yongliang Cheng ◽  
Cong Qian

A supporting-thrusting system is the main load-bearing component of a tunnel boring machine (TBM) and the centralization of vibration response under TBM working. This study combines the structure and working principle of the supporting-thrusting system. Based on the vibration theory and test results at a construction site, the main influence factors of the vibration response of the supporting-thrusting system are the main beam structure, the characteristic parameters of advance cylinder, and the support pressure to surrounding rock. Under the different influence factors, the vibration response of the supporting-thrusting system is calculated and analyzed via computer simulation. The results indicate that, under the equivalent input-load on the TBM and increase in the length of the front main beam, the vibration acceleration at the front area of the TBM increases. The change rate of vertical vibration will be maximum, while the vibration acceleration at the rear area of TBM decreases. When the structure size of the thrusting cylinder increases, the vibration acceleration on the main beam decreases and those of the gripper shoe and saddle frame increase. However, the response to the axis vibration is the most sensitive. As the horizontal support pressure to the surrounding rock increases, the vibration acceleration on supporting-thrusting system decreases. When the level of support pressure exceeds 1.6e4 kN, the vibration acceleration changes gradually. These results provide a reference for designing and operating TBM parameters.


2020 ◽  
Vol 140 (3) ◽  
pp. 320-325
Author(s):  
Yoshihiro Ohnishi ◽  
Takahisa Shigematsu ◽  
Takuma Kawai ◽  
Shinichi Kawamura ◽  
Noboru Oda

2016 ◽  
Vol 33 (3) ◽  
pp. 317
Author(s):  
Fei Wang ◽  
Mengbo Liu ◽  
Long Chen ◽  
Wen Liu ◽  
Linmeng Tang

Author(s):  
Gi-Jun Lee ◽  
Hee-Hwan Ryu ◽  
Tae-Hyuk Kwon ◽  
Gye-Chun Cho ◽  
Kyoung-Yul Kim ◽  
...  

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Ye Zhu ◽  
Wei Sun ◽  
Junzhou Huo ◽  
Zhichao Meng

AbstractThe accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine (TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum difference between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation (CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.


Author(s):  
Oskar-H. Pekoll

<p>To deal with the high volume of traffic in the historic city center of Karlsruhe (Germany), the track system of the historic surface tram is moved underground.</p><p>First, seven underground stations are built, which are then connected by using a tunnel boring machine for excavation of the tracks. While the traffic continues on the surface, the new underground stations are being built in sections using the dig-and-cast construction method. Due to the high ground water level bore piles and diaphragm walls of reinforced concrete / concrete cut-off wall are used as excavation pit shoring. A grouted sealing blanket made using jet grouting processes serves as horizontal blanket.</p><p>The cover is made while the traffic continues overhead, to this end traffic routing of road and tram traffic is altered in several stages of construction. The subsequent removal of the soil is realized via this newly created tunnel system – this way no truck traffic has to pass through the city center.</p><p>The construction is a challenge to permit a limitation of the deformations in relation to the settlement of the immediately adjacent historic buildings and also in the logistics of the construction while keeping the traffic above ground running.</p>


Sign in / Sign up

Export Citation Format

Share Document