A beam formulation with 3D capabilities for the free vibration analysis of thin-walled metallic and composite structures

2020 ◽  
Vol 146 ◽  
pp. 106441
Author(s):  
Fiorenzo A. Fazzolari
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
K. B. Bozdogan ◽  
D. Ozturk

This paper presents a method for a free vibration analysis of a thin-walled beam of doubly asymmetric cross section filled with shear sensitive material. In the study, first of all, a dynamic transfer matrix method was obtained for planar shear flexure and torsional motion. Then, uncoupled angular frequencies were obtained by using dynamic element transfer matrices and boundary conditions. Coupled frequencies were obtained by the well-known two-dimensional approaches. At the end of the study, a sample taken from the literature was solved, and the results were evaluated in order to test the convenience of the method.


Sign in / Sign up

Export Citation Format

Share Document