finite strip method
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 46)

H-INDEX

32
(FIVE YEARS 3)

Author(s):  
Bui Hung Cuong

This article presents a semi-analytical finite strip method based on Marguerre’s shallow shell theory and Kirchhoff’s assumption. The formulated finite strip is used to study the buckling behavior of thin-walled circular hollow sections (CHS) subjected to uniform bending. The shallow finite strip program of the present study is compared to the plate strip implemented in CUFSM4.05 program for demonstrating the accuracy and better convergence of the former. By varying the length of the CHS, the signature curve relating buckling stresses to half-wave lengths is established. The minimum local buckling point with critical stress and corresponding critical length can be found from the curve. Parametric studies are performed to propose approximative expressions for calculating the local critical stress and local critical length of steel and aluminum CHS.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5636
Author(s):  
Ján Kostka ◽  
Jozef Bocko ◽  
Peter Frankovský ◽  
Ingrid Delyová ◽  
Tomáš Kula ◽  
...  

The aim of the scientific contribution is to point out the possibility of applicability of cylindrical shells with a constant elliptical cross-sectional shape for stability loss analysis. The solution to the problem consists of two approaches. The first approach is the experimental measurement of critical force levels, where the work also describes the method of production of the sample and jigs that cause the desired elliptical shape. The second approach is solving the problem in the use of numerical methods—the finite strip method together with the finite element method.


2021 ◽  
pp. 109963622110204
Author(s):  
Mohammad Naghavi ◽  
Saeid Sarrami-Foroushani ◽  
Fatemeh Azhari

In this study, static analysis of functionally graded (FG) sandwich plates is performed using the finite strip method based on the refined plate theory (RPT). Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. Differential equations of FG sandwich plates are obtained using Hamilton's principle and stiffness and force matrices are formed using the finite strip method. The central deflection and the normal stress values are obtained for a sinusoidal loaded FG sandwich plate and the accuracy of the results are verified against those obtained from other theories such as the classical plate theory (CPT), the first-order shear deformation theory (FSDT), and the higher order shear deformation theory (HSDT). For the first time, this study presents a finite strip formulation in conjunction with the RPT to analyze FG Sandwich plates. While the proposed method is fast and simple, it is capable of modeling a variety of boundary conditions.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1271
Author(s):  
Piotr Paczos ◽  
Aleksandra M. Pawlak

Thin-walled channel columns with non-standard cross-section shapes loaded with gradually increasing compressive force applied at the geometric centre of gravity of the cross-section were the subject of the investigations presented in this paper. The aim of the research was to determine which of the columns has the most favourable geometrical characteristics in terms of the applied load. The main investigation was an experimental study carried out using two methods: strain gauging and the optical method. Based on strain gauging, the critical forces were determined using the strain averaging method and the linear regression tangent to compression plot method. In addition, modern optical tests were performed using the ARAMIS system. The buckling forces at which the first signs of buckling appear and the buckling modes of columns were determined. The results obtained from the experimental tests were used to validate the results of numerical tests carried out using the Finite Strip Method (CuFSM). Based on this method, the values of critical forces and the percentage contribution of individual buckling forms to the loss of stability of the compressed columns were determined.


Sign in / Sign up

Export Citation Format

Share Document