A 1D Ritz–Jacobi formulation for the modal analysis of 3D anisotropic laminated composite and soft-core sandwich beam structures through 2D polynomials

2021 ◽  
Vol 169 ◽  
pp. 108428
Author(s):  
Fiorenzo A. Fazzolari ◽  
Samuel Scott ◽  
Francesco Tornabene
2015 ◽  
Vol 134 ◽  
pp. 883-894 ◽  
Author(s):  
M.A.R. Loja ◽  
J.I. Barbosa ◽  
C.M. Mota Soares

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880869 ◽  
Author(s):  
Yu-Jia Hu ◽  
Wei-Gong Guo ◽  
Cheng Jiang ◽  
Yun-Lai Zhou ◽  
Weidong Zhu

Bayesian operational modal analysis and modal strain energy are employed for determining the damage and looseness of bolted joints in beam structures under ambient excitation. With this ambient modal identification technique, mode shapes of a damaged beam structure with loosened bolted connections are obtained based on Bayesian theory. Then, the corresponding modal strain energy can be calculated based on the mode shapes. The modal strain energy of the structure with loosened bolted connections is compared with the theoretical one without bolted joints to define a damage index. This approach uses vibration-based nondestructive testing of locations and looseness of bolted joints in beam structures with different boundary conditions by first obtaining modal parameters from ambient vibration data. The damage index is then used to identify locations and looseness of bolted joints in beam structures with single or multiple bolted joints. Furthermore, the comparison between damage indexes due to different looseness levels of bolted connections demonstrates a qualitatively proportional relationship.


2007 ◽  
Vol 16 (2) ◽  
pp. 096369350701600 ◽  
Author(s):  
Buket Okutan Baba ◽  
Ronald F. Gibson

The aim of this study is to report the effect of delamination on the vibration characteristics of composite sandwich beams. The natural frequencies and corresponding vibration modes of a free-free sandwich beam with delamination of various sizes and locations are predicted using a two-dimensional finite element analysis (FEA). The presence of delamination affects the stiffness of the delaminated beam and results in differences on the natural frequencies of the beam. Assessment of the differences light the way for the existence, size and location of the delaminated region and can be used for a non-destructive evaluation of the damage characteristics of the delaminated beams. Vibration tests are conducted on fully bonded sandwich beams with carbon/epoxy laminated composite faces and foam core to verify the finite element results. Agreement between predictions of the model and experimental observations is good.


2002 ◽  
Vol 24 (3) ◽  
pp. 205-211 ◽  
Author(s):  
J. B. Cardoso ◽  
L. G. Sousa ◽  
J. A. Castro ◽  
A. J. Valido

2012 ◽  
Vol 9 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Anupam Chakrabarti ◽  
H.D Chalak ◽  
Mohd. Ashraf Iqbal ◽  
Abdul Hamid Sheikh

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dan Feng

Structure material properties are heterogeneous in nature and would be characterized with different statistics at different length scales due to the spatially averaging effects. This work develops a framework for the modal analysis of beam structures with random field models at multiple scales. In this framework, the random field theory is adopted to model heterogeneous material properties, and the cross-correlations between material properties are explicitly considered. The modal parameters of a structure are then evaluated using the finite element (FE) method with the simulated heterogeneous material properties taken as input. With the aid of Monte Carlo simulation, the modal parameters are analyzed in a probabilistic manner. In addition, to accommodate the necessity of different mesh sizes in FE models, an approach of evaluating random field parameters and generating random field material properties at different length scales is developed. The performance of the proposed framework is demonstrated through the modal analysis of a simply supported beam, where the formulation of the multiscale random field approach is validated and the effects of heterogeneous material properties on modal parameters are analyzed. Parametric studies on the random field parameters, including the coefficient of variation and the scale of fluctuation, are also conducted to further investigate the relations between the random field parameters at different scales.


Sign in / Sign up

Export Citation Format

Share Document