Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids

Ultrasonics ◽  
2010 ◽  
Vol 50 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Eng Leong Tan
2008 ◽  
Vol 103 (6) ◽  
pp. 064907 ◽  
Author(s):  
Zhi Guo Wang ◽  
Sam Hyeon Lee ◽  
Chul Koo Kim ◽  
Choon Mahn Park ◽  
Kyun Nahm ◽  
...  

2016 ◽  
Vol 139 (6) ◽  
pp. 3288-3295 ◽  
Author(s):  
Marie-Fraise Ponge ◽  
Charles Croënne ◽  
Jérôme O. Vasseur ◽  
Olivier Bou Matar ◽  
Anne-Christine Hladky-Hennion ◽  
...  

2021 ◽  
Vol 195 ◽  
pp. 106227
Author(s):  
Shu-Yan Zhang ◽  
Dong-Jia Yan ◽  
Yue-Sheng Wang ◽  
Yan-Feng Wang ◽  
Vincent Laude

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


Sign in / Sign up

Export Citation Format

Share Document