lamb wave propagation
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 48)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 185 ◽  
pp. 108378
Author(s):  
Arash Ebrahiminejad ◽  
Ali Mardanshahi ◽  
Siavash Kazemirad

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6823
Author(s):  
Phong B. Dao ◽  
Wieslaw J. Staszewski

Lamb waves have been widely used for structural damage detection. However, practical applications of this technique are still limited. One of the main reasons is due to the complexity of Lamb wave propagation modes. Therefore, instead of directly analysing and interpreting Lamb wave propagation modes for information about health conditions of the structure, this study has proposed another approach that is based on statistical analyses of the stationarity of Lamb waves. The method is validated by using Lamb wave data from intact and damaged aluminium plates exposed to temperature variations. Four popular unit root testing methods, including Augmented Dickey–Fuller (ADF) test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, Phillips–Perron (PP) test, and Leybourne–McCabe (LM) test, have been investigated and compared in order to understand and make statistical inference about the stationarity of Lamb wave data before and after hole damages are introduced to the aluminium plate. The separation between t-statistic features, obtained from the unit root tests on Lamb wave data, is used for damage detection. The results show that both ADF test and KPSS test can detect damage, while both PP and LM tests were not significant for identifying damage. Moreover, the ADF test was more stable with respect to temperature changes than the KPSS test. However, the KPSS test can detect damage better than the ADF test. Moreover, both KPSS and ADF tests can consistently detect damages in conditions where temperatures vary below 60 °C. However, their t-statistics fluctuate more (or less homogeneous) for temperatures higher than 65 °C. This suggests that both ADF and KPSS tests should be used together for Lamb wave based structural damage detection. The proposed stationarity-based approach is motivated by its simplicity and efficiency. Since the method is based on the concept of stationarity of a time series, it can find applications not only in Lamb wave based SHM but also in condition monitoring and fault diagnosis of industrial systems.


2021 ◽  
Vol 150 (4) ◽  
pp. A109-A109
Author(s):  
Daniel Giraldo-Guzman ◽  
Cliff Lissenden ◽  
Mary Frecker ◽  
Parisa Shokouhi

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuai Jiang ◽  
Yiping Shen ◽  
Songlai Wang ◽  
Yanfeng Peng ◽  
Yi Liu

Piezoelectric fiber rosettes respond to the directivity characteristics of Lamb waves, and therefore, are useful in detecting the Lamb wave propagation direction. Considering material damage as a secondary wave source, two piezoelectric fiber rosettes are arranged to measure the scattered wave propagation directions for damage localization. The influences of various rosette configurations, i.e., 45°-rectangular, 135°-rectangular, 60°-delta, and 120°-delta, on the estimation accuracy of the propagation direction are investigated in this paper. The response of the piezoelectric fiber to the A 0 mode Lamb wave under narrowband tone-burst excitation is theoretically derived. Experimental tests and piezoelectric coupling simulations are performed to obtain the Lamb wave signal of each fiber. The matching pursuit (MP) algorithm is applied to extract the weak damage-related wave packet by using Hann-windowed narrowband excitation as an atom. The Lamb wave propagation directions are estimated based on the error function. The accuracies of the directions with 4 types of rosette configurations are compared, and their error sources are discussed. The results show that the accuracy of the 135°-rectangular configuration is relatively satisfactory, and the errors depend on the size and location of each fiber in the rosette. The proposed damage localization method is validated by experimental tests. The predicted locations are close to the actual damage location. The research results are significant for piezoelectric fiber rosette design and optimization and damage location without wave speed or time-of-flight information in complex or irregular structures.


Ultrasonics ◽  
2021 ◽  
pp. 106482
Author(s):  
Adil Han Orta ◽  
Jeroen Vandendriessche ◽  
Mathias Kersemans ◽  
Wim Van Paepegem ◽  
Nicolaas Bernardus Roozen ◽  
...  

2021 ◽  
pp. 147592172110086
Author(s):  
A Mardanshahi ◽  
MM Shokrieh ◽  
S Kazemirad

The estimation of the damping coefficient may help to improve the damage detection in composite materials. The purpose of this study was to develop the simulated Lamb wave propagation method for nondestructive monitoring of matrix cracking in laminated composites via the accurate estimation of their damping coefficient. Cross-ply composite specimens with different crack densities were fabricated and tested by the Lamb wave propagation technique. The phase velocity of the Lamb wave and the damping coefficient of the specimens were measured. The finite element models were developed at micro-scale (representative volume elements) and macro-scale (laminated specimens) levels to simulate the Lamb wave propagation in composite specimens. An optimization process was performed through the model updating procedure to achieve finite element models that were in good agreement with experiments. The phase velocity and damping coefficient, obtained from the updated FE models for two crack densities other than those used in the model updating procedure, were successfully examined by experimental results. It was also revealed that the damping coefficient and the rate of increase in the damping coefficient in terms of the crack density were higher for the composite laminates with a higher number of 90° layers. The damping of the fiber–matrix interphase and crack regions were considered in the model and shown as a significant contribution to the overall damping of the composite specimens. The proposed simulated Lamb wave propagation method can be used as a virtual lab for in-situ monitoring of laminated composites with different material properties, stacking sequences, and crack densities.


Sign in / Sign up

Export Citation Format

Share Document