Large intestine motility in the rodent—How does it measure up?

2020 ◽  
Vol 105 ◽  
pp. 106867
Author(s):  
Kate Voss ◽  
Jeanine Bussier ◽  
Aldo Coppi ◽  
Tyler Ardrey ◽  
Kristen Ford ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A257-A257
Author(s):  
K KAMIYA ◽  
H GOTO ◽  
Y NIWA ◽  
N OHMIYA ◽  
T HAYAKAWA

1961 ◽  
Vol 41 (5) ◽  
pp. 500-504 ◽  
Author(s):  
N. Cordero ◽  
T. Hastings Wilson

1965 ◽  
Vol 48 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Hideshige Imai ◽  
Susumu Saito ◽  
Arthur A. Stein

2006 ◽  
Vol 5 (1) ◽  
pp. 177-177
Author(s):  
A RYLOVA ◽  
G ARUTYUNOV ◽  
L KAFARSKAYA ◽  
N SAVELOV ◽  
N BYLOVA ◽  
...  

2019 ◽  
Author(s):  
Mahfud Mahfud ◽  
Ihwan

Excessive hunting and poaching for commercial purpose of Varanus salvator in Indonesia can cause a decline in this animal population. However, the scientific information of this animal especially about the biologic of organ system is rarely reported. Therefore, this case opens up opportunities for researching, which aims to study the anatomy of digestive tract of water monitor macroscopically. This research has been conducted in Biology Laboratory, University of Muhammadiyah Kupang for 5 months from March to August 2016. The digestive organ of this animal that has been preserved in alcohol 70% was obtained before from two males of water monitors. Preservation process: the animal were anesthetized, exsanguinated, and fixated in 4 paraformaldehyde by tissue perfusion method. Observations were performed to the visceral site and morphometrical of digestive tract. The resulted data was analysed descriptively and presented in tables and figures. The digestive tract of water monitor consist of esophagus, stomach, small intestine, large intestine and cloaca. The dimension of each organ is different based on its structures and functions. The esophagus of water monitor connects the mouth cavity and the stomach and also as the entrance of food to the stomach. Water monitor stomach were found in cranial part of abdomen, in left side of liver. The small intestine was longer than stomach and it is a winding muscular tube in abdomen in posterior side of liver. The large intestine consist of colon and cloaca, while cecum was not found. This channel was extend lateromedially in abdomen to cloaca between left and right kidneys. The cloaca was the end of digestive tract which excreted feces and urine. From this research, we can conclude that the digestive tract of water monitor consists of esophagus, stomach, small intestine, and large intestine. It’s difficult to differentiate small intestine and large intestine because there are no cecum.


2020 ◽  
pp. 91-95
Author(s):  
Vsevolod Skvortsov

Dolichosigmoid is a congenital and acquired pathology of large intestine. At present time, there are some criteria for classification, diagnostics and treatment of this pathology. The article presents the main supporting points for general practitioners and gastroenterologists who face this disease.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 176-176
Author(s):  
B V Le Thanh ◽  
J R R Bergstrom ◽  
J D Hahn ◽  
L F Wang ◽  
E Beltranena ◽  
...  

Abstract Feed enzymes may ameliorate reduced nutrient and energy digestibility in nursery pigs. The objective was to test effects of super-dosing phytase and fiber-degrading enzymes on digestibility of DM, GE, CP, AA, and Ca. We tested supplementing a super dose (added 1,500 FYT/kg) of phytase (Ronozyme Hi-Phos) with or without carbohydrase cocktail that contained 85 FXU β-xylanase/kg, 587 U/g endo-1,4-β-glucanase, 513 U/g endo-1,3(4)-β-glucanase, 15,000 U/g hemicellulases, and 3,000 U/g pectinases in corn-soybean meal diets in a 2 × 2 factorial arrangement. Diets included 68% corn, 17% SBM, and a basal level of 500 FTU/kg of phytase, and were formulated to contain 2.50 Mcal/kg NE and 5.10 gSID Lys/Mcal NE. Eight ileal-cannulated nursery pigs (initial BW 10 kg) were fed 4 diets at 3.0 × maintenance DE (110 kcal per kg of BW0.75) for four 9-day periods in a double 4 × 4 Latin square. Apparent hindgut fermentation (AHF) was calculated as apparent total tract digestibility (ATTD) minus apparent ileal digestibility (AID). Interactions between super-dosing phytase and carbohydrase cocktail were observed. Supplementing either carbohydrase cocktail or super dose phytase, but not their combination, increased (P < 0.05) diet AID of DM, GE, CP, and most AA by 4–5%-units. Supplementing super dose phytase increased (P < 0.05) AID of P by 16%-units and ATTD of P by 10%-units. Supplementing super dose phytase or carbohydrase cocktail did not affect AID of Ca and ATTD of GE, CP, and Ca, and diet DE value. Supplementing carbohydrase cocktail without super dose phytase decreased (P < 0.05) diet AHF of DM, GE, and CP. In conclusion, dietary inclusion of super dose phytase or carbohydrase cocktail increased ileal digestibility of nutrients in nursery pigs, and thereby reduced protein entering the large intestine. Additive or synergistic effects of carbohydrase cocktail and super dose phytase were not detected.


Sign in / Sign up

Export Citation Format

Share Document