nonalcoholic fatty liver disease
Recently Published Documents


TOTAL DOCUMENTS

7326
(FIVE YEARS 2545)

H-INDEX

182
(FIVE YEARS 29)

2022 ◽  
Vol 44 (1) ◽  
pp. 409-432
Author(s):  
Young-Seob Lee ◽  
Seon Min Oh ◽  
Qian-Qian Li ◽  
Kwan-Woo Kim ◽  
Dahye Yoon ◽  
...  

Curcumin (CM), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are major curcumin derivatives found in the rhizome of turmeric (Curcuma longa L.), and have yielded impressive properties to halt various diseases. In the present study, we carried out a method validation for curcumin derivatives and analyzed the contents simultaneously using HPLC with UV detection. For validation, HPLC was used to estimate linearity, range, specificity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). Results showed a high linearity of the calibration curve, with a coefficient of correlation (R2) for CM, DMC, and BDMC of 0.9999, 0.9999, and 0.9997, respectively. The LOD values for CM, DMC, and BDMC were 1.16, 1.03, and 2.53 ng/μL and LOQ values were 3.50, 3.11, and 7.67 ng/μL, respectively. Moreover, to evaluate the ability of curcumin derivatives to reduce liver lipogenesis and compare curcumin derivatives’ therapeutic effects, a HepG2 cell model was established to analyze their hepatoprotective properties. Regarding the in vivo study, we investigated the effect of DMC, CM, and BDMC on nonalcoholic fatty liver disease (NAFLD) caused by a methionine choline deficient (MCD)-diet in the C57BL/6J mice model. From the in vitro and in vivo results, curcumin derivatives alleviated MCD-diet-induced lipid accumulation as well as high triglyceride (TG) and total cholesterol (TC) levels, and the protein and gene expression of the transcription factors related to liver adipogenesis were suppressed. Furthermore, in MCD-diet mice, curcumin derivatives suppressed the upregulation of toll-like receptors (TLRs) and the production of pro-inflammatory cytokines. In conclusion, our findings indicated that all of the three curcuminoids exerted a hepatoprotective effect in the HepG2 cell model and the MCD-diet-induced NAFLD model, suggesting a potential for curcuminoids derived from turmeric as novel therapeutic agents for NAFLD.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiting Liu ◽  
Wei Wang

Abstract Background Lipid accumulation product (LAP) and cardiometabolic index (CMI) are two novel obesity-related indexes associated with enhancing metabolic disease (MD) risk. Current evidences suggest that the differences in sex hormones and regional fat distribution in both sexes are directly correlated with MD and nonalcoholic fatty liver disease (NAFLD) risk. Hence, NAFLD incidences reflect sex differences. Herein, we examined the accuracy of LAP and CMI in diagnosing NAFLD in both sexes. Methods Overall, 14,407 subjects, who underwent health check-up in the northeastern China, were enrolled in this study, and their corresponding LAP and CMI were calculated. Abdominal ultrasonography was employed for NAFLD diagnosis. Multivariate analyses were analyzed potential correlations between LAP and/or CMI and NAFLD. Odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated. Receiver operating characteristic curve analyses was executed for the exploration of the diagnostic accuracies. Areas under the curves (AUCs) with 95%CIs were calculated. Results NAFLD prevalence increased with elevated quartiles of LAP and CMI in both sexes. In multivariate logistic regression analyses, LAP and CM expressed as continuous variables or quartiles, significantly correlated with NAFLD. The ORs for the top versus bottom quartile of LAP and CMI for NAFLD were 13.183 (95%CI = 8.512–20.417) and 8.662 (95%CI = 6.371–11.778) in women and 7.544 (95%CI = 5.748–9.902) and 5.400 (95%CI = 4.297–6.786) in men. LAP and CMI exhibited larger AUCs, compared to other obesity-related indexes in terms of discriminating NAFLD. The AUCs of LAP and CMI were 0.860 (95%CI = 0.852–0.867) and 0.833 (95%CI = 0.825–0.842) in women and 0.816 (95%CI = 0.806–0.825) and 0.779 (95%CI = 0.769–0.789) in men. Conclusions LAP and CMI are convenient indexes for the screening and quantification of NAFLD within a Chinese adult population. Their associations with NAFLD are substantially greater in women than men.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoxiao Ge ◽  
Tao Sun ◽  
Yanmei Zhang ◽  
Yongqing Li ◽  
Peng Gao ◽  
...  

Abstract Objective To investigate the differential expression profile of lncRNAs in the nonalcoholic fatty liver disease (NAFLD) model induced by oleic acid (OA) and to further explore the role of LINC01260 (ENST00000255183) in NAFLD, providing theoretical support for the clinical value of lncRNAs in NAFLD. Methods OA (50 μg/mL) was used to induce steatosis in normal human LO2 hepatocytes for 48 h and was verified by Oil red O staining. Differential expression profiles of lncRNAs were obtained by eukaryotic circular sequencing (RNA/lncRNA/circRNA-seq) techniques. A gain-of-function (GOF) strategy for LINC01260 was adopted, Oil red O staining and semiquantitative analysis were combined to explore whether the GOF of LINC01260 affects LO2 cell steatosis. CeRNA-based bioinformatics analysis of lncRNAs was performed, and the enriched mRNAs were further verified. RXRB siRNAs were applied and verify its role in LINC01260 regulated OA-induced hepatocytes steatosis. Results Lipid droplets of different sizes were observed in the cells of the OA group. Absorbance in the OA group was significantly increased after isopropanol decolorization (P < 0.05). Compared with those in the control group, there were 648 lncRNAs with differential expression greater than 1 time in the OA group, of which 351 were upregulated and 297 were downregulated. Fluorescence quantitative PCR showed that the expression of LINC01260 in the OA group was downregulated by 0.35 ± 0.07-fold (P < 0.05). The formation of lipid droplets in LO2 cells of the LINC01260 GOF group decreased significantly (P < 0.05). CeRNA analysis indicated that the mRNA levels of RXRB, RNPEPL1, CD82, MADD and KLC2 were changed to different degrees. Overexpression of LINC01260 significantly induced RXRB transcription (P < 0.05) and translation, and RXRB silence attenuated the lipids decrease induced by LINC01260 overexpression. Conclusion The OA-induced NAFLD cell model has a wide range of lncRNA differential expression profiles. LINC01260 participates in the regulation of the lipid droplet formation process of NAFLD, and its overexpression can significantly inhibit the steatosis process of LO2 cells. Mechanistically, LINC01260 may act as a ceRNA to regulate the expression of RXRB, thereby affecting the adipocytokine signaling pathway.


2022 ◽  
Author(s):  
Wermerson Assunção Barroso ◽  
Mariana Barreto Serra ◽  
Iracelle Carvalho Abreu ◽  
Hermes Vieira Barbeiro ◽  
Jarlei Fiamoncini ◽  
...  

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Tingyi Du ◽  
Qin Fang ◽  
Zhihao Zhang ◽  
Chuanmeng Zhu ◽  
Renfan Xu ◽  
...  

Aim: Lentinan (LNT), a type of polysaccharide derived from Lentinus edodes, has manifested protective effects during liver injury and hepatocellular carcinoma, but little is known about its effects on nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate whether LNT can affect the progression of NAFLD and the associated mechanisms. Methods: C57BL/6J mice were fed a normal chow diet or a high-fat diet (HFD) with or without LNT (6 mg/kg/d). AML12 cells were exposed to 200 μM palmitate acid (PA) with or without LNT (5 μg/mL). Results: After 21 wk of the high-fat diet, LNT significantly decreased plasma triglyceride levels and liver lipid accumulation, reduced excessive reactive oxygen species production, and subsequently attenuated hepatic apoptosis in NAFLD mice. These effects were associated with increased PPARα levels, a decreased Bax/Bcl-2 ratio, and enhancement of the antioxidant defense system in vivo. Similar effects were also observed in cultured cells. More importantly, these protective effects of LNT on palmitate acid-treated AML12 cells were almost abolished by PPARα knockdown. Conclusion: In conclusion, this study demonstrates that LNT may ameliorate hepatic steatosis and decrease oxidative stress and apoptosis by activating the PPARα pathway and is a potential drug target for NAFLD.


2022 ◽  
Author(s):  
Suguru Kurokawa ◽  
Masato Yoneda ◽  
Yuji Ogawa ◽  
Yasushi Honda ◽  
Takaomi Kessoku ◽  
...  

Abstract Background We previously reported that two differentially methylated region (DMR) networks identified by DMR, and co-methylation analyses are strongly correlated with the fibrosis stages of nonalcoholic fatty liver disease (NAFLD). In the current study, we examined these DMR networks in viral hepatitis and hepatocellular carcinoma (HCC). Methods We performed co-methylation analysis of DMRs using a normal dataset (GSE48325), two NAFLD datasets (JGAS000059 and GSE31803), and two HCC datasets (GSE89852 and GSE56588). Results One DMR network was clearly observed in viral hepatitis and two HCC populations. Methylation levels of genes in this network were higher in viral hepatitis and lower in HCC. Fatty acid binding protein 1 (FABP1), serum/glucocorticoid regulated kinase 2 (SGK2), and hepatocyte nuclear factor 4 α (HNF4A) were potential hub genes in this network. Increased methylation levels of the FABP1 gene deteriorated the protection capacity of hepatocytes from oxidative metabolites in NAFLD and viral hepatitis. The decreased methylation levels of SGK2 facilitated the growth and proliferation of HCC cells. Decreased methylation levels of HNF4A in HCC cells were associated with tumorigenesis. The other DMR network was observed in NAFLD, but not in viral hepatitis or HCC. This second network-included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation, which are specifically related to fibrosis and/or tumorigenesis in NAFLD. Conclusions Our results suggest that one DMR network was associated with fibrosis and tumorigenesis in both NAFLD and viral hepatitis, while the other network was specifically associated with NAFLD progression. FABP1, SGK2, and HNF4A could be possible candidate targets for the prevention and treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document